The aim of the present study was to examine reliability and construct convergent validity of Player Load™ (PL) from trunk-mounted accelerometry, expressed as a cumulative measure and an intensity measure (PL · min). Fifteen male participants twice performed an overground football match simulation that included four different multidirectional football actions (jog, side cut, stride and sprint) whilst wearing a trunk-mounted accelerometer inbuilt in a global positioning system unit. Results showed a moderate-to-high reliability as indicated by the intra-class correlation coefficient (0.806-0.949) and limits of agreement. Convergent validity analysis showed considerable between-participant variation (coefficient of variation range 14.5-24.5%), which was not explained from participant demographics despite a negative association with body height for the stride task. Between-task variations generally showed a moderate correlation between ranking of participants for PL (0.593-0.764) and PL · min (0.282-0.736). It was concluded that monitoring PL in football multidirectional actions presents moderate-to-high reliability, that between-participant variability most likely relies on the individual's locomotive skills and not their anthropometrics, and that the intensity of a task expressed by PL · min is largely related to the running velocity of the task.
The onset of injury and subsequent period of immobilization and disuse present major challenges to maintenance of skeletal muscle mass and function. Although the characteristics of immobilization-induced muscle atrophy are well documented in laboratory studies, comparable data from elite athletes in free-living conditions are not readily available. We present a 6-month case-study account from a professional soccer player of the English Premier League characterizing rates of muscle atrophy and hypertrophy (as assessed by DXA) during immobilization and rehabilitation after ACL injury. During 8 weeks of inactivity and immobilization, where the athlete adhered to a low carbohydrate-high protein diet, total body mass decreased by 5 kg attributable to 5.8 kg loss and 0.8 kg gain in lean and fat mass, respectively. Changes in whole-body lean mass was attributable to comparable relative decreases in the trunk (12%, 3.8 kg) and immobilized limb (13%, 1.4 kg) whereas the nonimmobilized limb exhibited smaller declines (7%, 0.8 kg). In Weeks 8 to 24, the athlete adhered to a moderate carbohydrate-high protein diet combined with structured resistance and field based training for both the lower and upper-body that resulted in whole-body muscle hypertrophy (varying from 0.5 to 1 kg per week). Regional hypertrophy was particularly pronounced in the trunk and nonimmobilized limb during weeks 8 to 12 (2.6 kg) and 13 to 16 (1.3 kg), respectively, whereas the previously immobilized limb exhibited slower but progressive increases in lean mass from Week 12 to 24 (1.2 kg). The athlete presented after the totality of the injured period with an improved anthropometrical and physical profile.
Hamstring injuries constitute one of the most concerning injuries in English Premier League football, due to its high primary incidence but also its recurrence. Functional methods assessing hamstring function during high-risk performance tasks such as sprinting are vital to identify potential risk factors. The purpose of this study was to assess horizontal force deficits during maximum sprint running on a non-motorized treadmill in football players with previous history of hamstring strains as a pre-season risk-assessment in a club setting. 17 male football players from one Premier League Club were divided into 2 groups, experimental (n= 6, age = 24.5 ± 2.3 years) and control (n= 11, age = 21.3 ± 1.2 years), according to history of previous hamstring injury. Participants performed a protocol including a 10 seconds maximum sprint on a non-motorized treadmill. Force deficits during acceleration phase and steady state phases of the sprint were assessed between limbs and between groups. The main outcome measures were horizontal and vertical peak forces during the acceleration phase or steady state. There were no significant differences in peak forces between previously injured and non-injured limbs, or between groups, challenging the ideas around functional force deficits in sprint running as a diagnostic measure of hamstring re-injury risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.