Current app stores distribute some malware to unsuspecting users, even though the app approval process may be costly and timeconsuming. High-integrity app stores must provide stronger guarantees that their apps are not malicious. We propose a verification model for use in such app stores to guarantee that the apps are free of malicious information flows. In our model, the software vendor and the app store auditor collaborate -each does tasks that are easy for her/him, reducing overall verification cost. The software vendor provides a behavioral specification of information flow (at a finer granularity than used by current app stores) and source code annotated with information-flow type qualifiers. A flow-sensitive, context-sensitive information-flow type system checks the information flow type qualifiers in the source code and proves that only information flows in the specification can occur at run time. The app store auditor uses the vendor-provided source code to manually verify declassifications.We have implemented the information-flow type system for Android apps written in Java, and we evaluated both its effectiveness at detecting information-flow violations and its usability in practice. In an adversarial Red Team evaluation, we analyzed 72 apps (576,000 LOC) for malware. The 57 Trojans among these had been written specifically to defeat a malware analysis such as ours. Nonetheless, our information-flow type system was effective: it detected 96% of malware whose malicious behavior was related to information flow and 82% of all malware. In addition to the adversarial evaluation, we evaluated the practicality of using the collaborative model. The programmer annotation burden is low: 6 annotations per 100 LOC. Every sound analysis requires a human to review potential false alarms, and in our experiments, this took 30 minutes per 1,000 LOC for an auditor unfamiliar with the app.
Many programs can be configured through dynamic and/or static selection of configuration variables. A software product line (SPL), for example, specifies a family of programs where each program is defined by a unique combination of features. Systematically testing SPL programs is expensive as it can require running each test against a combinatorial number of configurations. Fortunately, a test is often independent of many configuration variables and need not be run against every combination. Configurations that are not required for a test can be pruned from execution. This paper presents SPLat, a new way to dynamically prune irrelevant configurations: the configurations to run for a test can be determined during test execution by monitoring accesses to configuration variables. SPLat achieves an optimal reduction in the number of configurations and is lightweight compared to prior work that used static analysis and heavyweight dynamic execution. Experimental results on 10 SPLs written in Java show that SPLat substantially reduces the total test execution time in many cases. Moreover, we demonstrate the scalability of SPLat by applying it to a large industrial code base written in Ruby on Rails.
Implicit or indirect control flow is a transfer of control between procedures using some mechanism other than an explicit procedure call. Implicit control flow is a staple design pattern that adds flexibility to system design. However, it is challenging for a static analysis to compute or verify properties about a system that uses implicit control flow.This paper presents static analyses for two types of implicit control flow that frequently appear in Android apps: Java reflection and Android intents. Our analyses help to resolve where control flows and what data is passed. This information improves the precision of downstream analyses, which no longer need to make conservative assumptions about implicit control flow.We have implemented our techniques for Java. We enhanced an existing security analysis with a more precise treatment of reflection and intents. In a case study involving ten real-world Android apps that use both intents and reflection, the precision of the security analysis was increased on average by two orders of magnitude. The precision of two other downstream analyses was also improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.