This paper presents a technique to extract load signatures non-intrusively by using the smart meter data. Load signature extraction is different from load activity identification. It is a new and important problem to solve for the applications of non-intrusive load monitoring (NILM). For a target appliance whose signatures are to be extracted, the proposed technique first selects the candidate events that are likely to be associated with the appliance by using generic signatures and an event filtration step. It then applies a clustering algorithm to identify the authentic events of this appliance. In the third step, the operation cycles of appliances are estimated using an association algorithm. Finally, the electric signatures are extracted from these operation cycles. The results can have various applications. One is to create signature databases for the NILM applications. Another is for load condition monitoring. Validation results based on the data collected from three actual houses and a laboratory experiment have shown that the proposed method is a promising solution to the problem of load signature collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.