To evaluate the association between gastric cancer susceptibility and inflammation-related gene polymorphisms, the authors conducted a series of meta-analyses using a predefined protocol. Genes investigated were those coding for the interleukin (IL) proteins (IL1B, IL1RN, IL8, and IL10) and for tumor necrosis factor-alpha. Gastric cancers were stratified by histologic subtype and anatomic subsite, by Helicobacter pylori infection status, by geographic location (Asian or non-Asian study population), and by a quantitative index of study quality. All published literature and meeting abstracts from the period 1990-2006 were considered. Results consistently supported increased cancer risk for IL1RN2 carriers; the increased risk was specific to non-Asian populations and was seen for intestinal and diffuse cancers, distal cancers, and, to a lesser extent, cardia cancers. Analyses restricted to high-quality studies or H. pylori-positive cases and controls also showed significant associations with both carrier status and homozygosity status. In Asian populations, reduced risk was observed in association with IL1B-31C carrier status. This effect was also observed in analyses restricted to high-quality studies. These results indicate the importance of stratification by anatomic site, histologic type, H. pylori infection, and country of origin. Study quality considerations, both laboratory and epidemiologic, can also affect results and may explain, in part, the variability in results published to date.
SUMMARY:It has been advanced that the trefoil factor (TFF) 1 gene is a candidate tumor-suppressor gene and may be involved in the development and/or progression of human gastric cancer. We aimed to clarify the putative role of TFF1 in gastric carcinogenesis. Ninety gastric carcinomas and eight gastric carcinoma-derived cell lines were screened for TFF1 mutations; subsets of the primary tumors and of the cell lines were subjected to loss of heterozygosity (LOH), immunohistochemistry, and promoter methylation analyses. TFF1 mutations were not detected in any of 90 gastric carcinomas. Eight (28%) of 28 informative cases displayed LOH at the TFF1 locus and absence of TFF1 staining by immunohistochemistry. These results indicate a frequent loss of TFF1 expression in gastric carcinomas through a mutation-independent mechanism. Extensive TFF1 promoter methylation was observed in nonexpressing gastric carcinoma-derived cell lines and tissues. Expressing cell lines, as well as normal gastric mucosa, presented little or no methylation of the promoter. Gastric carcinoma DNA presented de novo methylation of the promoter. These results point to the involvement of promoter methylation in the shutting down of TFF1. We conclude that TFF1 point mutations seem to be a rare event in gastric carcinogenesis. The loss of expression of TFF1 in a proportion of gastric carcinomas may be explained by LOH and methylation of the TFF1 promoter region. Our results further support the role of TFF1 inactivation in gastric carcinogenesis, in agreement with the results obtained in the Tff1-knockout mice model. (Lab Invest 2002, 82:1319 -1326.
Purpose: Epidermal growth factor (EGF) plays a critical role in cancer. A polymorphism in the EGF gene (EGF+61) may influence its expression and contribute to cancer predisposition and aggressiveness. In the present study, we aimed to elucidate the role of EGF+61in glioma susceptibility and prognosis. Experimental Design: A case-control study involving197 glioma patients and 570 controls was done. Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). False-positive report probability was also assessed. The luciferase reporter gene assay was used to ascertain the functional consequences of this polymorphism. Results: Corroborating the univariate analysis, the multivariate model showed that the G allele conferred higher risks for gliomas (OR, 1.32; 95% CI, 1.04-1.67), glioblastomas (OR, 1.47; 95% CI, 1.02-2.10), and oligodendrogliomas (OR, 1.55; 95% CI, 1.07-2.23). The GG genotypes were associated with increased risk for gliomas (OR, 1.71; 95% CI, 1.07-2.73), glioblastomas (OR, 2.03; 95% CI, 1.02-4.05), and oligodendrogliomas (OR, 2.72; 95% CI, 1.18-6.28). In addition, the AG+GG genotypes were associated with higher risk for gliomas (OR, 1.52; 95% CI, 1.03-2.23) and oligodendrogliomas (OR, 2.80; 95% CI, 1.35-5.79). No significant association was observed between the EGF+61polymorphism and glioblastoma or oligodendroglioma patients' overall survival. The luciferase reporter gene assay exhibited a significant increased promoter activity for the G variant compared with the reference A allele. Conclusions: These findings support the role of the EGF+61 polymorphism as a susceptibility factor for development of gliomas and show its implication on EGF promoter activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.