A generalized finite element method based on a partition of unity (POU) with smooth approximation functions is investigated in this paper for modeling laminated plates under Kirchhoff hypothesis. The shape functions are built from the product of a Shepard POU and enrichment functions. The Shepard functions have a smoothness degree directly related to the weight functions adopted for their evaluation. The weight functions at a point are built as products of C ∞ edge functions of the distance of such a point to each of the cloud boundaries. Different edge functions are investigated to generate C k functions. The POU together with polynomial global enrichment functions build the approximation subspace. The formulation implemented in this paper is aimed at the general case of laminated plates composed of anisotropic layers. A detailed convergence analysis is presented and the integrability of these functions is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.