Recent research in inductive category learning has demonstrated that interleaved study of category exemplars results in better performance than does studying each category in separate blocks. However, the questions of how the category structure influences this advantage and how simultaneous presentation interacts with the advantage are open issues. In this article, we present three experiments. The first experiment indicates that the advantage of interleaved over blocked study is modulated by the structure of the categories being studied. More specifically, interleaved study results in better generalization for categories with high within- and between-category similarity, whereas blocked presentation results in better generalization for categories with low within- and between-category similarity. In Experiment 2, we present evidence that when presented simultaneously, between-category comparisons (interleaved presentation) result in a performance advantage for high-similarity categories, but no differences were found for low-similarity categories. In Experiment 3, we directly compared simultaneous and successive presentation of low-similarity categories. We again found an overall benefit for blocked study with these categories. Overall, these results are consistent with the proposal that interleaving emphasizes differences between categories, whereas blocking emphasizes the discovery of commonalities among objects within the same category.
Research on how information should be studied during inductive category learning has identified both interleaving of categories and blocking by category as beneficial for learning. Previous work suggests that this mixed evidence can be reconciled by taking into account within- and between-category similarity relations. In this article, we present a new moderating factor. Across two experiments, one group of participants studied categories actively (by studying the objects without correct category assignment and actively figuring out what the category was), either interleaved or blocked. Another group studied the same categories passively (objects and correct category assignment were simultaneously provided). Results from a subsequent generalization task show that whether interleaved or blocked study results in better learning depends on whether study is active or passive. One account of these results is that different presentation sequences and tasks promote different patterns of attention to stimulus components. Passive learning and blocking promote attending to commonalities within categories, while active learning and interleaving promote attending to differences between categories.
The sequence of study influences how we learn. Previous research has identified different sequences as potentially beneficial for learning in different contexts and with different materials. Here we investigate the mechanisms involved in inductive category learning that give rise to these sequencing effects. Across 3 experiments we show evidence that the sequence of study changes what information learners attend to during learning, what is encoded from the materials studied and, consequently, what is remembered from study. Interleaved study (alternating between presentation of 2 categories) leads to an attentional focus on properties that differ between successive items, leading to relatively better encoding and memory for item properties that discriminate between categories. Conversely, when learners study each category in a separate block (blocked study), learners encode relatively more strongly the characteristic features of the items, which may be the result of a strong attentional focus on sequential similarities. These results provide support for the sequential attention theory proposing that inductive category learning takes place through a process of sequential comparisons between the current and previous items. Different sequences of items change how attention is deployed depending on this basic process. Which sequence results in better or worse learning depends on the match between what is encoded and what is required at test. (PsycINFO Database Record
Inductive category learning takes place across time. As such, it is not surprising that the sequence in which information is studied has an impact in what is learned and how efficient learning is. In this paper we review research on different learning sequences and how this impacts learning. We analyze different aspects of interleaved (frequent alternation between categories during study) and blocked study (infrequent alternation between categories during study) that might explain how and when one sequence of study results in improved learning. While these different sequences of study differ in the amount of temporal spacing and temporal juxtaposition between items of different categories, these aspects do not seem to account for the majority of the results available in the literature. However, differences in the type of category being studied and the duration of the retention interval between study and test may play an important role. We conclude that there is no single aspect that is able to account for all the evidence available. Understanding learning as a process of sequential comparisons in time and how different sequences fundamentally alter the statistics of this experience offers a promising framework for understanding sequencing effects in category learning. We use this framework to present novel predictions and hypotheses for future research on sequencing effects in inductive category learning.
Whenever people think of an object as something (e.g. that Fido is a dog, a pet, or loyal), they are categorizing it using their internal concepts. A concept is a mental representation that allows different things to be treated equivalently for some purpose. People learn concepts to facilitate communication, to make useful predictions about their world, to create mental building blocks for expressing more sophisticated thoughts, and to form efficient representations for objects and situations. We discuss five approaches to how concepts are learned and represented: rules, prototypes, exemplars, category boundaries, and theories. Whereas some of these approaches leave the impression that concepts are isolated mental structures, connections between concepts are also critically important. We discuss connections between concepts and perception that link categorization to object recognition and serve to ground concepts in the world. Consistent with this connection, concepts and perceptual processes mutually influence one another. We also describe connections between concepts and language that allow concepts to subserve abstract communication, and for language needs to reciprocally affect concepts. Finally, we predict future directions for concept learning research, including formal computational modeling and educational applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.