This research focused on determining the dose levels suitable for electron beam irradiation of mangoes without detriment to the fruit's quality characteristics. Physicochemical, textural, respiration rates, microstructural, and sensory characteristics of “Tommy Atkins” mangoes irradiated at 1.0, 1.5, and 3.1 kGy using a 10 MeV (10 kW) linear accelerator with double‐beam fixture were determined. Fruits were stored at 12 °C and 62.7% RH for 21 d and evaluated at days 0, 5, 10, and 21. Nonirradiated mangoes served as controls. Irradiation did affect the textural characteristics of mangoes at doses higher than 1.0 kGy. Mangoes exposed to 1.5 and 3.1 kGy were softer and less stiff throughout storage. The radiation‐induced softening of the fruits may be associated with changes in the structural cell such as cracks and depressions on the surface and the breakdown of the cells and its components. Irradiation at 3.1 kGy affected the color of mangoes by the end of storage. Doses up to 1.5 kGy kept respiration rates at a normal level. Irradiation did not affect the specific gravity of mangoes, a parameter associated with fruit maturity levels. No effect of irradiation on pH, water activity, moisture content, acidity, and juiciness of mangoes was detected at the dose levels used in this study. Only fruits irradiated at 3.1 kGy were unacceptable to the sensory panelists in terms of overall quality, texture, and aroma. Electron beam irradiation of “Tommy Atkins” mangoes at 1.0 kGy is the recommended treatment to maintain the overall fruit quality attributes.
We determined the optimum irradiation treatment for decontamination of physiologically mature fresh "Tommy Atkins" mangoes, without
PRACTICAL APPLICATIONSThis study shows that precise irradiation treatment of fruits such as mangoes is required to ensure the entire product is exposed to the target dose.3 Corresponding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.