Molecular dynamics simulation has been employed in the computation of the free energy of solvation for a large number of solute molecules with different chemical functionalities in the solvents water, acetonitril, dimethyl sulfoxide, tetrahydrofuran, and carbon disulfide. The free solvation energy has been separated into three contributions: the work necessary to create a cavity around the solute in the solvent, the electrostatic contribution, and the free energy containing the short-range interactions between solute and solvent molecules. The cavitational contribution was computed from the Claverie-Pierotti model applied to excluded volumes obtained from nearest-neighbor solute-solvent configurations treating the solvent molecules as spherical. The electrostatic term was calculated from a dielectric continuum approach with explicitly incorporating the solvent's partial charges. The short-range contribution to the free solvation energy was obtained from the force field employed in the simulations. For solutions with available experimental data for the free energy of solvation, we found a satisfactory agreement of the computed free solvation energies and the experimental data set.
The SARS‐CoV‐2 pandemic is the biggest health concern today, but until now there is no treatment. One possible drug target is the receptor binding domain (RBD) of the coronavirus’ spike protein, which recognizes the human angiotensin‐converting enzyme 2 (hACE2). Our in silico study discusses crucial structural and thermodynamic aspects of the interactions involving RBDs from the SARS‐CoV and SARS‐CoV‐2 with the hACE2. Molecular docking and molecular dynamics simulations explain why the chemical affinity of the new SARS‐CoV‐2 for hACE2 is much higher than in the case of SARS‐CoV, revealing an intricate pattern of hydrogen bonds and hydrophobic interactions and estimating a free energy of binding, which is consistently much more negative in the case of SARS‐CoV‐2. This work presents a chemical reason for the difficulty in treating the SARS‐CoV‐2 virus with drugs targeting its spike protein and helps to explain its infectiousness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.