Simple SummaryIt is important to understand how the flooring substrate used in dog housing impacts dog health and well-being. Aspects to consider include paw, elbow, and hock health, the cleanliness of the dog, and the ability of the floors to be cleaned easily and thoroughly. This pilot study assessed the health and cleanliness of 118 dogs housed on three different types of flooring commonly found in commercial breeding kennels. No serious paw, elbow, or hock problems were identified. Thirty-one percent or fewer kennels at each facility were found to have fecal contamination after routine cleaning and the majority of dogs were clean. These findings indicate that a well-managed kennel can maintain clean, healthy dogs on different types of flooring substrates.AbstractEvaluation of kennel flooring surfaces is needed to understand their impacts on dog health and well-being. This pilot study aimed to characterize aspects of physical health, kennel cleanliness, and dog body cleanliness on flooring types common in US breeding kennels. Subjects were 118 adult dogs housed on diamond-coated expanded metal (DCEM), polypropylene (POLY), or concrete (CON) flooring at five commercial breeding facilities in Indiana, U.S. Body condition, paw, elbow, and hock health scores were recorded. Each indoor kennel and dog was visually assessed for cleanliness. Kennels were swabbed immediately after cleaning with electrostatic dry cloths and cultured for Escherichia coli. Descriptive statistics were used for analysis. Mean body condition score (BCS), kennel and dog cleanliness scores were all near ideal (3, 1.15, and 1.04, respectively). Thirty-one percent or fewer kennels at each facility were culture-positive for E. coli after cleaning. No serious paw, elbow, or hock problems were identified. Overall, the findings indicate that with appropriate management and regular access to additional surfaces, dog foot health, cleanliness, and kennel cleanliness can be maintained on the flooring types investigated.
Lipids play a critical role in the skin as components of the epidermal barrier and as signaling and antimicrobial molecules. Atopic dermatitis in dogs is associated with changes in the lipid composition of the skin, but whether these precede or follow the onset of dermatitis is unclear. We applied rapid lipid-profiling mass spectrometry to skin and blood of 30 control and 30 atopic dogs. Marked differences in lipid profiles were observed between control, nonlesional, and lesional skin. The lipid composition of blood from control and atopic dogs was different, indicating systemic changes in lipid metabolism. Female and male dogs differed in the degree of changes in the skin and blood lipid profiles. Treatment with oclacitinib or lokivetmab ameliorated the skin condition and caused changes in skin and blood lipids. A set of lipid features of the skin was selected as a biomarker that classified samples as control or atopic dermatitis with 95% accuracy, whereas blood lipids discriminated between control and atopic dogs with 90% accuracy. These data suggest that canine atopic dermatitis is a systemic disease and support the use of rapid lipid profiling to identify novel biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.