Organ dysfunction is a major concern in sepsis pathophysiology and contributes to its high mortality rate. Neutrophil extracellular traps (NETs) have been implicated in endothelial damage and take part in the pathogenesis of organ dysfunction in several conditions. NETs also have an important role in counteracting invading microorganisms during infection. The aim of this study was to evaluate systemic NETs formation, their participation in host bacterial clearance and their contribution to organ dysfunction in sepsis. C57Bl/6 mice were subjected to endotoxic shock or a polymicrobial sepsis model induced by cecal ligation and puncture (CLP). The involvement of cf-DNA/NETs in the physiopathology of sepsis was evaluated through NETs degradation by rhDNase. This treatment was also associated with a broad-spectrum antibiotic treatment (ertapenem) in mice after CLP. CLP or endotoxin administration induced a significant increase in the serum concentrations of NETs. The increase in CLP-induced NETs was sustained over a period of 3 to 24 h after surgery in mice and was not inhibited by the antibiotic treatment. Systemic rhDNase treatment reduced serum NETs and increased the bacterial load in non-antibiotic-treated septic mice. rhDNase plus antibiotics attenuated sepsis-induced organ damage and improved the survival rate. The correlation between the presence of NETs in peripheral blood and organ dysfunction was evaluated in 31 septic patients. Higher cf-DNA concentrations were detected in septic patients in comparison with healthy controls, and levels were correlated with sepsis severity and organ dysfunction. In conclusion, cf-DNA/NETs are formed during sepsis and are associated with sepsis severity. In the experimental setting, the degradation of NETs by rhDNase attenuates organ damage only when combined with antibiotics, confirming that NETs take part in sepsis pathogenesis. Altogether, our results suggest that NETs are important for host bacterial control and are relevant actors in the pathogenesis of sepsis.
Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression.
Survivors from sepsis are in an immunosuppressed state that is associated with higher long-term mortality and risk of opportunistic infections. Whether these factors contribute to neoplastic proliferation, however, remains unclear. Tumorassociated macrophages (TAM) can support malignant cell proliferation, survival, and angiogenesis. We addressed the relationship between the post-sepsis state, tumor progression and TAM accumulation, and phenotypic and genetic profile, using a mouse model of sepsis resolution and then B16 melanoma in mice. In addition, we measured the serum concentrations of TNFa, TGFb, CCL2, and CXCL12 and determined the effect of in vivo CXCR4/CXCL12 inhibition in this context. Mice that survived sepsis showed increased tumor progression both in the short and long term, and survival times were shorter. TAM accumulation, TAM local proliferation, and serum concentrations of TGFb, CXCL12, and TNFa were increased. Na€ ve mice inoculated with B16 together with macrophages from post-sepsis mice also had faster tumor progression and shorter survival. Post-sepsis TAMs had less expression of MHC-II and leukocyte activation-related genes. Inhibition of CXCR4/CXCL12 prevented the post-sepsis-induced tumor progression, TAM accumulation, and TAM in situ proliferation. Collectively, our data show that the post-sepsis state was associated with TAM accumulation through CXCR4/ CXCL12, which contributed to B16 melanoma progression.
Anakinra is effective for preventing experimentally ifosfamide induced hemorrhagic cystitis. It seems that neutrophil and macrophage infiltration in this circumstance depends on IL-1 signaling through IL1R. Possibly TNFR2 has a protective role in hemorrhagic cystitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.