Despite the considerable progress in the classification of the idiopathic interstitial pneumonias (IIPs), the lack of an international standard has resulted in variable and confusing diagnostic criteria and terminology. The advent of high-resolution computerized tomography, the narrowed pathologic definition of usual interstitial pneumonia (UIP) and recognition of the prognostic importance of separating UIP from other IIP patterns have profoundly changed the approach to the IIPs. This is an international Consensus Statement defining the clinical manifestations, pathology, and radiologic features of patients with IIP. The major objectives of this statement are to standardize the classification of the idiopathic interstitial pneumonias (IIPs) and to establish a uniform set of definitions and criteria for the diagnosis of IIPs. The targeted specialties are pulmonologists, radiologists, and pathologists. A multidisciplinary core panel was responsible for review of background articles and writing of the document. In addition, this group reviewed the clinical, radiologic, and pathologic aspects of a wide spectrum of cases of diffuse parenchymal interstitial lung diseases to establish a uniform and consistent approach to these diseases and to clarify the terminology, definitions, and descriptions used in routine clinical practice. The final statement was drafted after a series of meetings of the entire committee. The level of evidence for the recommendations made in this statement is largely that of expert opinion developed by consensus. This classification of IIPs includes seven clinico-radiologic-pathologic entities: idiopathic pulmonary fibrosis (IPF), nonspecific interstitial pneumonia, cryptogenic organizing pneumonia, acute interstitial pneumonia, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and lymphoid interstitial pneumonia. The need for dynamic interaction between pathologists, radiologists, and pulmonologists to accurately diagnose these disorders is emphasized. The level of evidence for the recommendations made in this Statement is largely that of expert opinion developed by consensus. This Statement is an integrated clinical, radiologic, and pathologic approach to the classification of the IIPs. Use of this international multidisciplinary classification will provide a standardized nomenclature and diagnostic criteria for IIP. This Statement provides a framework for the future study of these entities. Key Messages * Unclassifiable interstitial pneumonia : Some cases are unclassifiable for a variety of reasons (see text). † This group represents a heterogeneous group with poorly characterized clinical and radiologic features that needs further study. ‡ COP is the preferred term, but it is synonymous with idiopathic bronchiolitis obliterans organizing pneumonia.
The authors' full names, academic degrees, and affiliations are listed in the Appendix. Address reprint requests to Dr. Kan at P.O. Box 249, 130 Dong-An Road, Shanghai 200032, China, or at kanh@ fudan . edu . cn.Drs. Liu and R. Chen and Drs. Gasparrini and Kan contributed equally to this article.
SummaryBackgroundClimate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.MethodsWe collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes.FindingsOur dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.InterpretationThis study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.FundingUK Medical Research Council.
Aims Brazil ranks high in the number of coronavirus disease 19 (COVID‐19) cases and the COVID‐19 mortality rate. In this context, autopsies are important to confirm the disease, determine associated conditions, and study the pathophysiology of this novel disease. The aim of this study was to assess the systemic involvement of COVID‐19. In order to follow biosafety recommendations, we used ultrasound‐guided minimally invasive autopsy (MIA‐US), and we present the results of 10 initial autopsies. Methods and results We used MIA‐US for tissue sampling of the lungs, liver, heart, kidneys, spleen, brain, skin, skeletal muscle and testis for histology, and reverse transcription polymerase chain reaction to detect severe acute respiratory syndrome coronavirus 2 RNA. All patients showed exudative/proliferative diffuse alveolar damage. There were intense pleomorphic cytopathic effects on the respiratory epithelium, including airway and alveolar cells. Fibrinous thrombi in alveolar arterioles were present in eight patients, and all patients showed a high density of alveolar megakaryocytes. Small thrombi were less frequently observed in the glomeruli, spleen, heart, dermis, testis, and liver sinusoids. The main systemic findings were associated with comorbidities, age, and sepsis, in addition to possible tissue damage due to the viral infection, such as myositis, dermatitis, myocarditis, and orchitis. Conclusions MIA‐US is safe and effective for the study of severe COVID‐19. Our findings show that COVID‐19 is a systemic disease causing major events in the lungs and with involvement of various organs and tissues. Pulmonary changes result from severe epithelial injury and microthrombotic vascular phenomena. These findings indicate that both epithelial and vascular injury should be addressed in therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.