Distributed data aggregation is an important task, allowing the decentralized determination of meaningful global properties, that can then be used to direct the execution of other applications. The resulting values result from the distributed computation of functions like count, sum and average. Some application examples can found to determine the network size, total storage capacity, average load, majorities and many others. In the last decade, many different approaches have been proposed, with different trade-offs in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of aggregation algorithms, it can be difficult and time consuming to determine which techniques will be more appropriate to use in specific settings, justifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally defines the concept of aggregation, characterizing the different types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.arXiv:1110.0725v1 [cs.DC] 4 Oct 2011 or by a membership service for wireless ad hoc networks (more precisely, to compute the mixing time of a random walk) [6]. The network size is computed through the count aggregation function. Nevertheless, other meaningful global properties can be computed using different functions, for example: average can be applied to determine the average system load which can be used to direct local load balancing decisions; sum allows the determination of totals values such as the total free disk space available in a file-sharing system. In the particular case of Wireless Sensor Networks (WSN), data gathering is only practicable if data aggregation is performed, due to the strict energy constraints found on such environments.The above examples intend to illustrate some of the main reasons that have motivated the research and development of distributed data aggregation approaches along the past years, but more can be found in the literature. Besides all the existing relevant application examples, aggregation has also being stated as one of basis for scalability in large scale services [91], reinforcing its importance. Currently, a huge amount of distinct approaches constitute the body of related work on distributed data aggregation algorithms, with all exhibiting different trade-offs in terms of accuracy, time, communication and fault-tolerance. All existing techniques have confirmed that obtaining global statistics in a distributed fashion is a difficult problem, specially when considering faults and network dynamism. Moreover, in front of such diversity, it becomes difficult to choose which distributed data aggregation algorithm should be preferred in a given scenario, and which one will best suit the...
Data aggregation plays an important role in the design of scalable systems, allowing the determination of meaningful system-wide properties to direct the execution of distributed applications. In the particular case of wireless sensor networks, data collection is often only practicable if aggregation is performed. Several aggregation algorithms have been proposed in the last few years, exhibiting different properties in terms of accuracy, speed and communication tradeoffs. Nonetheless, existing approaches are found lacking in terms of fault tolerance. In this paper, we introduce a novel fault-tolerant averaging based data aggregation algorithm. It tolerates substantial message loss (link failures), while competing algorithms in the same class can be affected by a single lost message. The algorithm is based on manipulating flows (in the graph theoretical sense), that are updated using idempotent messages, providing it with unique robustness capabilities. Furthermore, evaluation results obtained by comparing it with other averaging approaches have revealed that it outperforms them in terms of time and message complexity.
Aggregation of data values plays an important role on distributed computations, in particular, over peer-to-peer and sensor networks, as it can provide a summary of some global system property and direct the actions of self-adaptive distributed algorithms. Examples include using estimates of the network size to dimension distributed hash tables or estimates of the average system load to direct load balancing. Distributed aggregation using nonidempotent functions, like sums, is not trivial as it is not easy to prevent a given value from being accounted for multiple times; this is especially the case if no centralized algorithms or global identifiers can be used. This paper introduces Extrema Propagation, a probabilistic technique for distributed estimation of the sum of positive real numbers. The technique relies on the exchange of duplicate insensitive messages and can be applied in flood and/or epidemic settings, where multipath routing occurs; it is tolerant of message loss; it is fast, as the number of message exchange steps can be made just slightly above the theoretical minimum; and it is fully distributed, with no single point of failure and the result produced at every node.
Abstract-Data aggregation is a fundamental building block of modern distributed systems. Averaging based approaches, commonly designated gossip-based, are an important class of aggregation algorithms as they allow all nodes to produce a result, converge to any required accuracy, and work independently from the network topology. However, existing approaches exhibit many dependability issues when used in faulty and dynamic environments. This paper extends our own technique, Flow Updating, which is immune to message loss, to operate in dynamic networks, improving its fault tolerance characteristics. Experimental results show that the novel version of Flow Updating vastly outperforms previous averaging algorithms; it self adapts to churn without requiring any periodic restart, supporting node crashes and high levels of message loss.
Data aggregation is a fundamental building block of modern distributed systems. Averaging based approaches, commonly designated gossip-based, are an important class of aggregation algorithms as they allow all nodes to produce a result, converge to any required accuracy, and work independently from the network topology. However, existing approaches exhibit many dependability issues when used in faulty and dynamic environments. This paper describes and evaluates a fault tolerant distributed aggregation technique, Flow Updating, which overcomes the problems in previous averaging approaches and is able to operate on faulty dynamic networks. Experimental results show that this novel approach outperforms previous averaging algorithms; it self-adapts to churn and input value changes without requiring any periodic restart, supporting node crashes and high levels of message loss, and works in asynchronous networks. Realistic concerns have been taken into account in evaluating Flow Updating, like the use of unreliable failure detectors and asynchrony, targeting its application to realistic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.