Prostate Cancer (PCa) is the most common oncological disease in Western men. Even though a growing effort has been carried out by the scientific community in recent years, accurate and reliable automated PCa detection methods on multiparametric Magnetic Resonance Imaging (mpMRI) are still a compelling issue. In this work, a Deep Neural Network architecture is developed for the task of classifying clinically significant PCa on non-contrast-enhanced MR images. In particular, we propose the use of Conditional Random Fields as a Recurrent Neural Network (CRF-RNN) to enhance the classification performance of XmasNet, a Convolutional Neural Network (CNN) architecture specifically tailored to the PROSTATEx17 Challenge. The devised approach builds a hybrid end-to-end trainable network, CRF-XmasNet, composed of an initial CNN component performing feature extraction and a CRF-based probabilistic graphical model component for structured prediction, without the need for two separate training procedures. Experimental results show the suitability of this method in terms of classification accuracy and training time, even though the high-variability of the observed results must be reduced before transferring the resulting architecture to a clinical environment. Interestingly, the use of CRFs as a separate postprocessing method achieves significantly lower performance with respect to the proposed hybrid end-to-end approach. The proposed hybrid end-to-end CRF-RNN approach yields excellent peak performance for all the CNN architectures taken into account, but it shows a high-variability, thus requiring future investigation on the integration of CRFs into a CNN.
Considering that Prostate Cancer (PCa) is the most frequently diagnosed tumor in Western men, considerable attention has been devoted in computer-assisted PCa detection approaches. However, this task still represents an open research question. In the clinical practice, multiparametric Magnetic Resonance Imaging (MRI) is becoming the most used modality, aiming at defining biomarkers for PCa. In the latest years, deep learning techniques have boosted the performance in prostate MR image analysis and classification. This work explores the use of the Semantic Learning Machine (SLM) neuroevolution algorithm to replace the backpropagation algorithm commonly used in the last fully-connected layers of Convolutional Neural Networks (CNNs). We analyzed the non-contrast-enhanced multispectral MRI sequences included in the PROSTATEx dataset, namely: T2-weighted, Proton Density weighted, Diffusion Weighted Imaging. The experimental results show that the SLM significantly outperforms XmasNet, a state-of-the-art CNN. In particular, with respect to XmasNet, the SLM achieved higher classification accuracy (without neither pre-training the underlying CNN nor relying on the backprogation) as well as a speed-up of one order of magnitude. CCS CONCEPTS • Computing methodologies → Neural networks; Bio-inspired approaches; Search methodologies; Learning settings;
Prostate cancer (PCa) is the most common oncological disease in Western men. Even though a significant effort has been carried out by the scientific community, accurate and reliable automated PCa detection methods are still a compelling issue. In this clinical scenario, high-resolution multiparametric Magnetic Resonance Imaging (MRI) is becoming the most used modality, also enabling quantitative studies. Recently, deep learning techniques have achieved outstanding results in prostate MRI analysis tasks, in particular with regard to image classification. This paper studies the feasibility of using the Semantic Learning Machine (SLM) neuroevolution algorithm to replace the fully-connected architecture commonly used in the last layers of Convolutional Neural Networks (CNNs). The experimental phase considered the PROSTATEx dataset composed of multispectral MRI sequences. The achieved results show that, on the same non-contrast-enhanced MRI series, SLM outperforms with statistical significance a state-of-the-art CNN trained with backpropagation. The SLM performance is achieved without pretraining the underlying CNN with backpropagation. Furthermore, on average the SLM training time is approximately 14 times faster than the backpropagation-based approach. CCS CONCEPTS• Computing methodologies → Neural networks; Bio-inspired approaches; Search methodologies; Learning settings;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.