This paper presents the state of the art of self-etch adhesive systems. Four topics are shown in this review and included: the historic of this category of bonding agents, bonding mechanism, characteristics/properties and the formation of acid-base resistant zone at enamel/dentin-adhesive interfaces. Also, advantages regarding etch-and-rinse systems and classifications of self-etch adhesive systems according to the number of steps and acidity are addressed. Finally, issues like the potential durability and clinical importance are discussed. Self-etch adhesive systems are promising materials because they are easy to use, bond chemically to tooth structure and maintain the dentin hydroxyapatite, which is important for the durability of the bonding.
In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.
Clinical RelevanceSince methods of solvent evaporation can change the degree of conversion for some adhesives, practitioners should be aware of the type and composition of bonding agents used.
The objective of this study was to analyze the dentin-resin cements interfacial ultramorphologies using two different methods: scanning (SEM) and transmission electron microscopy (TEM). Four commercial products were evaluated: two conventional cementing system (RelyX ARC/Adper™ Scotchbond™ Multi-Purpose Plus, 3M ESPE and Clearfil Esthetic Cement/DC Bond, Kuraray) and two self-adhesive resin cements (RelyX Unicem, 3M ESPE and Clearfil SA Cement, Kuraray). Prepolymerized resin disks (Sinfony, 3M ESPE) were cemented on oclusal dentin surfaces of 24 third human molars, simulating the indirect restorations. After 24 h, teeth were sectioned into 0.9-mm thick slabs and processed for microscopy analyses (SEM or TEM/ n = 3). Qualitative characterization of dentin-resin cement interface was performed. Hybrid layer formation with long and dense resin tags was observed only for RelyX ARC cementing system. Clearfil Esthetic Cement/DC Bond system revealed few and short resin tags formation, whereas no hybridization and resin tags were detected for self-adhesive resin cements. Some interfacial regions exhibited that the self-adhesive resin cements were not bonded to dentin, presenting bubbles or voids at the interfaces. In conclusion, TEM and SEM bonding interface analyses showed ultramorphological variations among resin cements, which are directly related to dental bonding strategies used for each resin cement tested.
This study evaluated the effect of resin coating (COA) on dentin bond strength (BS) of five resin cements (RC). Ten groups were tested, according to RC and COA combinations. RCs were applied onto prepolymerized resin discs, which were bonded to dentin surfaces. Teeth were stored in water for 24 h, subjected to 5,000 thermocycles and sectioned to obtain beams, which were tested in tension. The COA increased the BS for Panavia F2.0, RelyX Unicem, and RelyX Unicem 2, whereas no changes in BS were observed for two other RCs; Clearfil SA Cement, which showed the lowest BS among groups with COA and G-Cem, which showed the highest BS among RCs without COA. COA can increase the BS of RC depending on the type of RC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.