Cytogenetic analysis was performed in peripheral blood lymphocytes from hospital workers chronically exposed to ionizing radiation in comparison to matched non-exposed individuals. The accumulated absorbed doses calculated for the radiation workers ranged from 9.5 to 209.4 mSv. The endpoints used were chromosomal aberrations (CA), micronuclei (MN), and sister chromatid exchanges (SCE). The frequencies of CA/100 cells observed for the exposed group were significantly (P=0.018) higher than in the control group: 3.2 and 2.6, respectively. Similarly, the mean numbers of SCE per cell were statistically higher (P=0.025) in the exposed group (6.2) in comparison with the control group (5.8). In the case of micronuclei analysis, no significant (P=0,06) difference between both groups was found, but these data should be cautiously interpreted since an increase in the frequencies of MN was found for radiation workers (3.0 MN/100 cells), compared to the control group (2.6 MN/100 cells) and this increase occur in parallel to CA and SCE frequencies. The difference between the results could be explained by the nature of CA and MN generation. The increased frequencies of CA and SCE in radiation workers indicate the cumulative effect of low-level chronic exposure to ionizing radiation, and the relevance of conducting cytogenetic analysis in parallel to physical dosimetry in the working place.
BackgroundThe development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression.MethodsThe study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells.ResultsWe observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (ARID4A, CALR, GNB2L1, RNF10, SQSTM1, USP9X) were validated by real time PCR.ConclusionsA significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.
The mode of action of annexin A1 (ANXA1) is poorly understood. By using rapid subtraction hybridization we studied the effects of human recombinant ANXA1 and the N-terminal ANXA1 peptide on gene expression in a human larynx cell line. Three genes showed strong downregulation after treatment with ANXA1. In contrast, expression of CCR10, a seven transmembrane G-protein coupled receptor for chemokine CCL27 involved in mucosal immunity, was increased. Moreover the reduction in CCR10 expression induced by ANXA1 gene deletion was rescued by intravenous treatment with low doses of ANXA1. These findings provide new evidence that ANXA1 modulates gene expression.
Giant cells tumors of bone (GCTB) are benign in nature but cause osteolytic destruction with a number of particular characteristics. These tumors can have uncertain biological behavior often contain a significant proportion of highly multinucleated cells, and may show aggressive behavior. We have studied differential gene expression in GCTB that may give a better understanding of their physiopathology, and might be helpful in prognosis and treatment. Rapid subtractive hybridization (RaSH) was used to identify and measure novel genes that appear to be differentially expressed, including KTN1, NEB, ROCK1, and ZAK using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry in the samples of GCTBs compared to normal bone tissue. Normal bone was used in the methodology RaSH for comparison with the GCTB in identification of differentially expressed genes. Functional annotation indicated that these genes are involved in cellular processes related to their tumor phenotype. The differential expression of KTN1, ROCK1, and ZAK was independently confirmed by qRT-PCR and immunohistochemistry. The expression of the KTN1 and ROCK1 genes were increased in samples by qRT-PCR and immunohistochemistry, and ZAK had reduced expression. Since ZAK have CpG islands in their promoter region and low expression in tumor tissue, their methylation pattern was analyzed by MSP-PCR. The genes identified KTN1, ROCK1, and ZAK may be responsible for loss of cellular homeostasis in GCTB since they are responsible for various functions related to tumorigenesis such as cell migration, cytoskeletal organization, apoptosis, and cell cycle control and thus may contribute at some stage in the process of formation and development of GCTB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.