Coverage path planning consists of finding the route which covers every point of a certain area of interest. In recent times, Unmanned Aerial Vehicles (UAVs) have been employed in several application domains involving terrain coverage, such as surveillance, smart farming, photogrammetry, disaster management, civil security, and wildfire tracking, among others. This paper aims to explore and analyze the existing studies in the literature related to the different approaches employed in coverage path planning problems, especially those using UAVs. We address simple geometric flight patterns and more complex grid-based solutions considering full and partial information about the area of interest. The surveyed coverage approaches are classified according to a classical taxonomy, such as no decomposition, exact cellular decomposition, and approximate cellular decomposition. This review also contemplates different shapes of the area of interest, such as rectangular, concave and convex polygons. The performance metrics usually applied to evaluate the success of the coverage missions are also presented.
This paper addresses distributed task allocation among teams of agents in a RoboCup Rescue scenario. We are primarily concerned with testing different mechanisms that formalize issues underlying implicit coordination among teams of agents. These mechanisms are developed, implemented, and evaluated using two algorithms: Swarm-GAP and LA-DCOP. The latter bases task allocation on a comparison between an agent's capability to perform a task and the capability demanded by this task. Swarm-GAP is a probabilistic approach in which an agent selects a task using a model inspired by task allocation among social insects. Both algorithms were also compared to another one that allocates tasks in a greedy way. Departing from previous works that tackle task allocation in the rescue scenario only among fire brigades, here we consider the various actors in the RoboCup Rescue, a step forward in the direction of realizing the concept of extreme teams. Tasks are allocated to teams of agents without explicit negotiation and using only local information. Our results show that the performance of Swarm-GAP and LA-DCOP are similar and that they outperform a greedy strategy. Also, it is possible to see that using more sophisticated mechanisms for task selection does pay off in terms of score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.