Wastewater (WW) treatment using microalgae has become a growing trend due the economic and environmental benefits of the process. As microalgae need CO2, nitrogen, and phosphorus to grow, they remove these potential pollutants from wastewaters, making them able to replace energetically expensive treatment steps in conventional WW treatment. Unlike traditional sludge, biomass can be used to produce biofuels, biofertilizers, high value chemicals, and even next-generation growth media for “organically” grown microalgal biomass targeting zero-waste policies and contributing to a more sustainable circular bioeconomy. The main challenge in this technology is the techno-economic feasibility of the system. Alternatives such as the isolation of novel strains, the use of native consortia, and the design of new bioreactors have been studied to overcome this and aid the scale-up of microalgal systems. This review focuses on the treatment of urban, industrial, and agricultural wastewaters by microalgae and their ability to not only remove, but also promote the reuse, of those pollutants. Opportunities and future prospects are discussed, including the upgrading of the produced biomass into valuable compounds, mainly biofuels.
The valorization of microalgal biomass produced during wastewater treatment has the potential to mitigate treatment costs. As contaminated biomass (e.g., with pharmaceuticals, toxic metals, etc.) is often generated, biogas production is considered an effective valorization option. The biomass was obtained from a pilot facility of photobioreactors for tertiary wastewater treatment. The pilots were run for one year with naturally formed microalgal consortia. The biogas was generated in 70 mL crimp-top vials at 35 °C, quantified with a manometer and the methane yield measured by gas chromatography. A maximum biogas production of 311 mL/g volatile solids (VS) with a methane yield of 252 mL/g VS was obtained with the spring samples. These rather low values were not improved using previous thermo-acidic hydrolysis, suggesting that the low intrinsic biodegradable organic matter content of the consortia might be the cause for low yield. Considering the total volume of wastewater treated by this plant and the average amount of methane produced in this study, the substitution of the current tertiary treatment with the one here proposed would reduce the energy consumption of the plant by 20% and create an energy surplus of 2.8%. The implementation of this system would therefore contribute towards meeting the ambitious decarbonization targets established by the EU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.