Researchers have investigated several therapeutic approaches to treat non-union fractures. Among these, bioactive glasses and glass ceramics have been widely used as grafts. This class of biomaterial has the ability to integrate with living bone. Nevertheless, bioglass and bioactive materials have been used mainly as powder and blocks, compromising the filling of irregular bone defects. Considering this matter, our research group has developed a new bioactive glass composition that can originate malleable fibers, which can offer a more suitable material to be used as bone graft substitutes. Thus, the aim of this study was to assess the morphological structure (via scanning electron microscope) of these fibers upon incubation in phosphate buffered saline (PBS) after 1, 7 and 14 days and, also, evaluate the in vivo tissue response to the new biomaterial using implantation in rat tibial defects. The histopathological, immunohistochemistry and biomechanical analyzes after 15, 30 and 60 days of implantation were performed to investigate the effects of the material on bone repair. The PBS incubation indicated that the fibers of the glassy scaffold degraded over time. The histological analysis revealed a progressive degradation of the material with increasing implantation time and also its substitution by granulation tissue and woven bone. Histomorphometry showed a higher amount of newly formed bone area in the control group (CG) compared to the biomaterial group (BG) 15 days post-surgery. After 30 and 60 days, CG and BG showed a similar amount of newly formed bone. The novel biomaterial enhanced the expression of RUNX-2 and RANK-L, and also improved the mechanical properties of the tibial callus at day 15 after surgery. These results indicated a promising use of the new biomaterial for bone engineering. However, further long-term studies should be carried out to provide additional information concerning the material degradation in the later stages and the bone regeneration induced by the fibrous material.
Bioactive glasses (BGs) are known for their ability to bond to living bone and cartilage. In general, they are readily available in powder and monolithic forms, which are not ideal for the optimal filling of bone defects with irregular shapes. In this context, the development of BG-based scaffolds containing flexible fibres is a relevant approach to improve the performance of BGs. This study is aimed at characterizing a new, highly porous, fibrous glassy scaffold and evaluating its in vitro and in vivo biocompatibility. The developed scaffolds were characterized in terms of porosity, mineralization and morphological features. Additionally, fibroblast and osteoblast cells were seeded in contact with extracts of the scaffolds to assess cell proliferation and genotoxicity after 24, 72 and 144 h. Finally, scaffolds were placed subcutaneously in rats for 15, 30 and 60 days. The scaffolds presented interconnected porous structures, and the precursor bioglass could mineralize a hydroxyapatite (HCA) layer in simulated body fluid (SBF) after only 12 h. The biomaterial elicited increased fibroblast and osteoblast cell proliferation, and no DNA damage was observed. The in vivo experiment showed degradation of the biomaterial over time, with soft tissue ingrowth into the degraded area and the presence of multinucleated giant cells around the implant. At day 60, the scaffolds were almost completely degraded and an organized granulation tissue filled the area. The results highlight the potential of this fibrous, glassy material for bone regeneration, due to its bioactive properties, non-cytotoxicity and biocompatibility. Future investigations should focus on translating these findings to orthotopic applications. Copyright © 2015 John Wiley & Sons, Ltd.
Osteoporosis represents a major health problem in terms of compromising bone strength and increasing the risk of bone fractures. It can be medically treated with bisphosphonates, which act systemically upon oral or venous administration. Further, bone regenerative treatments in osteoporotic conditions present a challenge. Here, we focused on the development of a synthetic bone substitute material with local diminishing effects on osteoporosis. Composites were created using calcium phosphate cement (CPC; 60 wt%) and polylactic-co-glycolic acid (PLGA; 40 wt%), which were loaded with alendronate (ALN). In vitro results showed that ALN-loaded CPC/PLGA composites presented clinically suitable properties, including setting times, appropriate compressive strength, and controlled release of ALN, the latter being dependent on composite degradation. Using a rat femoral condyle bone defect model in osteoporotic animals, ALN-loaded CPC/PLGA composites demonstrated stimulatory effects on bone formation both within and outside the defect region.
Biomaterial-based bone grafts have an important role in the field of bone tissue engineering. One of the most promising classes of biomaterials is collagen, including the ones from marine biodiversity (in general, called spongin (SPG)). Also, hydroxyapatite (HA) has an important role in stimulating bone metabolism. Therefore, this work investigated the association of HA and SPG composites in order to evaluate their physico-chemical and morphological characteristics and their in vitro biological performance. For this, pre-set composite disks were evaluated by means of mass loss after incubation, pH, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and "in vitro" cell viability. pH measurements showed no statistical difference between groups. Moreover, a higher mass loss was observed for HA/SPG70/30 compared to the other groups for all experimental periods. Moreover, SEM representative micrographs showed the degradation of the samples with and without immersion. FTIR analysis demonstrated the absorption peaks for poly(methyl methacrylate) (PMMA), HA, and SPG. A higher L292 cell viability for control and PMMA was observed compared to HA and HA/SPG 90/10. Also, HA/SPG 70/30 showed higher cell viability compared to HA and HA/SPG 90/10 on days 3 and 7 days of culture. Furthermore, HA showed a significant lower MC3T3 cell viability compared to control and HA/SPG 70/30 on day 3 and no significant difference was observed between the composites in the last experimental period. Based on our investigations, it can be concluded that the mentioned composites were successfully obtained, presenting improved biological properties, especially the one mimicking the composition of bone (with 70% of HA and 30% of SPG). Consequently, these data highlight the potential of the introduction of SPG into HA to improve the performance of the graft for bone regeneration applications. Further long-term studies should be carried out to provide additional information concerning the late stages of material degradation and bone healing in the presence of HA/SPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.