The effect of high temperature on the mechanical properties of concrete reinforced by steel fibers with various aspect ratios has been investigated in this study. Concrete specimens were fabricated from four different concrete mixtures and cured for 28 days. After curing and natural drying, the specimens were annealed at a temperature of 500 • C for 3 h in an electric furnace. The compressive and tensile strengths as well as the elastic moduli of the produced specimens were determined. It was found that the mechanical properties (especially flexural toughness) of steel fiber-reinforced concrete were less affected by high temperature as compared to those of control concrete specimens. The flexural tensile strength of fiber-reinforced concrete measured after high-temperature treatment was almost equal to the value obtained for the reference concrete specimen at room temperature. It should be noted that the addition of steel fibers to concrete preserves its mechanical properties after exposure to a temperature of 500 • C due to fire for a period of up to 3 h, and thus is able to improve its high-temperature structural stability. The test results of this study indicate that the use of steel fibers in concrete-based materials significantly enhances their fire and hear-resistant characteristics.
The civil construction industry consumes huge amounts of raw materials and energy, especially infrastructure. Thus, the use of eco-friendly materials is indispensable to promote sustainable development. In this context, the present work investigated low-carbon concrete to produce eco-friendly paving blocks. The binder was defined according to two approaches. In the first, a binary binder developed with eucalyptus biomass ash (EBA) and silica fume (SF) was used, in total replacement for Portland cement. In the second, the mixture of residues was used as a precursor in alkali-activation reactions, forming alkali-activated binder. The experimental approach was carried out using five different mixtures, obtained by varying the amount of water or sodium hydroxide solution. The characterization of this new material was carried out using compressive strength, expandability, water absorption, deep abrasion, microstructural investigation, and organic matter degradation potential. The results showed that the EBA-SF system has a performance compatible with Portland cement when used as an alternative binder, in addition to functioning as a precursor to alkali-activated concrete. The blocks produced degraded organic matter, and this degradation is more intense with the incidence of UV. In this way, the EBA-SF binder can be successfully used for the manufacture of ecological paving blocks with low carbon emissions.
The present study evaluated the mechanical behaviour of thin high-performance cementitious composite slabs reinforced with short steel fibres. For this purpose, slabs with 1%, 3% and 5% vol. of steel fibres were moulded using the slurry infiltration method. Fibres concentrated in the region subjected to traction during bending stresses. After curing for 28 days, all slabs underwent flexural testing. The slabs with 5% fibre showed significantly higher flexural strength, deflection and toughness compared to those of the control group without reinforcement. The dense fibre distribution, resulting from the production process, led to profiles with multiple random cracks in the region of failure of the slabs as the fibre content increased. The results of the statistical analysis showed the intensity of the correlation between the variables and revealed that the increase of the fibre content significantly influenced the parameters of mechanical behaviour (load, flexural strength, deflection, toughness and toughness factor). Images obtained by optical microscopy aided in understanding the fibre–matrix interface, showing the bonding surface between the constituents of the composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.