An understanding of mechanisms of contaminant effects across levels of biological organization is essential in ecotoxicology if we are to generate predictive models for population-level effects. We applied a suite of biochemical, histological, and behavioral end points related to visual structure and function and foraging behavior to evaluate effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on swim-up rainbow trout. We detected a dose-dependent decrease in densities of retinal ganglion cells (RGC), key retinal neurons that link the eye with the brain. These changes resulted in corresponding deficits in visual/motor function including reductions in visual acuity and in scotopic and photopic thresholds due to TCDD. The loss of RGCs suggests an increase in convergence of synapses from photoreceptors to RGCs as a cellular mechanism for the visual deficits. Dose-dependent increases in immunohistochemical detection of CYP1A protein in the vasculature of the brain and eye choroid was proportional with decreased ganglion cell densities in the retina. TCDD-induced AHR-regulated effects on these tissues might be involved in the detected decrease in ganglion cell densities. Prey capture rate decreased after TCDD exposure only atthe highesttreatment groups evaluated. Collectively, these results show that TCDD causes biochemical and structural changes in the eye and brain of rainbow trout that are associated with behavioral deficits leading to decreased individual fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.