Seismic inversion is routinely used to determine rock properties, such as acoustic impedance and porosity, from seismic data. Nonuniqueness of the solutions is a major issue. A good strategy to reduce this inherent ambiguity of the inversion procedure is to introduce stratigraphic and structural information a priori to better construct the low-frequency background model. This is particularly relevant when studying heterogeneous deepwater turbidite reservoirs that form prolific, but complex, hydrocarbon plays in the Brazilian offshore basins. We evaluated a high-resolution inversion workflow applied to 3D seismic data at Marlim Field, Campos Basin, to recover acoustic impedance and porosity of the turbidites reservoirs. The Marlim sandstones consist of an Oligocene/Miocene deepwater turbidite system forming a series of amalgamated bodies. The main advantage of our workflow is to incorporate the interpreter’s knowledge about the local stratigraphy to construct an enhanced background model, and then extract a higher resolution image from the seismic data. High-porosity zones were associated to the reservoirs facies; meanwhile, the nonreservoir facies were identified as low-porosity zones.
Synthetic data provided by geoelectric earth models are a powerful tool to evaluate a priori a controlled-source electromagnetic (CSEM) workflow effectiveness. Marlim R3D (MR3D) is an open-source complex and realistic geoelectric model for CSEM simulations of the postsalt turbiditic reservoirs at the Brazilian offshore margin. We have developed a 3D CSEM finite-difference time-domain forward study to generate the full-azimuth CSEM data set for the MR3D earth model. To that end, we fabricated a full-azimuth survey with 45 towlines striking the north–south and east–west directions over a total of 500 receivers evenly spaced at 1 km intervals along the rugged seafloor of the MR3D model. To correctly represent the thin, disconnected, and complex geometries of the studied reservoirs, we have built a finely discretized mesh of [Formula: see text] cells leading to a large mesh with a total of approximately 90 million cells. We computed the six electromagnetic field components (Ex, Ey, Ez, Hx, Hy, and Hz) at six frequencies in the range of 0.125–1.25 Hz. In our efforts to mimic noise in real CSEM data, we summed to the data a multiplicative noise with a 1% standard deviation. Both CSEM data sets (noise free and noise added), with inline and broadside geometries, are distributed for research or commercial use, under the Creative Common License, at the Zenodo platform.
We present an interpretation method for the gravity anomaly of an arbitrary interface separating two homogeneous media. It consists essentially of a downward continuation of the observed anomaly and the division of the continued anomaly by a scale factor involving the density contrast between the media. The knowledge of the interface depth at isolated points is used to estimate the depth [Formula: see text] of the shallowest point of the interface, the density contrast Δρ between the two media, and the coefficients [Formula: see text] and [Formula: see text] of a first‐order polynomial representing a linear trend to be removed from data. The solutions are stabilized by introducing a damping parameter in the computation of the downward‐continued anomaly by the equivalent layer method. Different from other interface mapping methods using gravity data, the proposed method: (1) takes into account the presence of an undesirable linear trend in data; (2) requires just intervals for both Δρ (rather than the knowledge of its true value) and coefficients [Formula: see text] and [Formula: see text]; and (3) does not require the knowledge of the average interface depth [Formula: see text]. As a result of (3), the proposed method does not call for extensive knowledge of the interface depth to obtain a statistically significant estimate of [Formula: see text]; rather, it is able to use the knowledge of the interface depth at just a few isolated points to estimate [Formula: see text], Δρ, [Formula: see text], and [Formula: see text]. Tests using synthetic data confirm that the method produces good and stable estimates as far as the established premises (smooth interface separating two homogeneous media and, at most, the presence of an unremoved linear trend in data) are not violated. If the density contrast is not uniform, the method may still be applied using Litinsky’s concept of effective density. The method was applied to gravity data from Recôncavo Basin, Brazil, producing good correlations of estimated lows and terraces in the basement with corresponding known geological features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.