Purpose: To investigate the consistency of symptom cluster composition in advanced cancer patients using different statistical methodologies for all patients across five primary cancer sites, and to examine which clusters predict functional status, a global assessment of health and global quality of life.Methods: Principal components analysis and exploratory factor analysis (with different rotation and factor selection methods) and hierarchical cluster analysis (with different linkage and similarity measures) were used on a dataset of 1562 advanced cancer patients who completed the EORTC QLQ-C30.Results: Four clusters consistently formed for many of the methods and cancer sites: tenseworry-irritable-depressed (emotional cluster); fatigue-pain; nausea-vomiting; and concentrationmemory (cognitive cluster). The emotional cluster was a stronger predictor of overall quality of life than the other clusters. Fatigue-pain was a stronger predictor of overall health than the other clusters. The cognitive cluster and fatigue-pain predicted physical functioning, role functioning, and social functioning. Conclusions:The four identified symptom clusters were consistent across statistical methods and cancer types, although there were some noteworthy differences. Statistical derivation of symptom clusters is in need of greater methodological guidance. A psychosocial pathway in the management of symptom clusters may improve quality of life. Biological mechanisms underpinning symptom clusters need to be delineated by future research. A framework for evidence-based screening, assessment, treatment, and follow-up of symptom clusters in advanced cancer is essential.Statistical methods for symptom clusters in advanced cancer
ObjectiveTo evaluate the validity of cancer-specific and generic preference-based instruments to discriminate across different measures of cancer severities.MethodsPatients with breast (n = 66), colorectal (n = 57), and lung (n = 61) cancer completed the EORTC QLQ-C30 and the FACT-G, as well as three generic instruments: the EQ-5D, the SF-6D, and the HUI2/3. Disease severity was quantified using cancer stage, Eastern Cooperative Oncology Group Performance Status (ECOG-PS) score, and self-reported health status. Comparative analyses confirmed the multi-dimensional conceptualization of the instruments in terms of construct and convergent validity.ResultsIn general, the instruments were able to discriminate across severity measures. The instruments demonstrated moderate to strong correlation with each other (r = 0.37-0.73). Not all of the measures could discriminate between different groups of disease severity: the EQ-5D and SF-6D were less discriminative than the HUI2/3 and the cancer-specific instruments.ConclusionThe cancer-specific and generic preference-based instruments demonstrated to be valid in discriminating across levels of ECOG-PS scores and self-reported health states. However, the usefulness of the generic instruments may be limited if they are not able to detect small changes in health status within cancer patients. This raises concerns regarding the appropriateness of these instruments when comparing different cancer treatments within an economic evaluation framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.