The effects of oxytocin (OT) on gastric emptying, gastrointestinal transit, and plasma levels of cholecystokinin (CCK) were studied in female rats. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal and Na(2)(51)CrO(4). Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Blood samples were collected for CCK radioimmunoassay. After administration of OT (0.2-0.8 mg/kg), gastric emptying and gastrointestinal transit were inhibited, whereas the plasma concentration of CCK was increased in a dose-dependent manner. Atosiban, an oxytocin receptor antagonist, effectively attenuated the OT- induced inhibition of gastric emptying and gastrointestinal transit. However, administration of atosiban alone had no effect on gastric emptying and gastrointestinal transit. The selective CCK(1) receptor antagonists, devazepide and lorglumide, effectively attenuated the OT-induced inhibition of gastric emptying and gastrointestinal transit. L-365, 260, a selective CCK(2) receptor antagonist, did not alter the OT-induced inhibition of gastric emptying and gastrointestinal transit. These results suggest that OT inhibits gastric emptying and gastrointestinal transit in female rats via a mechanism involving CCK stimulation and CCK(1) receptor activation.
BackgroundMemory impairment is a frequent complication of brain ischemia. Neurogenesis is implicated in learning and memory and is regulated by the transcription factor c-Fos. Preconditioning intermittent hypoxia (IH) attenuates ischemia-related memory impairments, but it is not known whether post-ischemia IH intervention has a similar effect. We investigated the effects of post-ischemia IH on hippocampal neurogenesis and c-Fos expression as well as spatial learning and memory in rats.Methodology/Principal FindingsFocal cerebral ischemia was induced in some rats by middle cerebral artery occlusion (MCAO), while other rats received sham MCAO surgery. Beginning a week later, half of the rats of each group received IH interventions (12% oxygen concentration, 4 hrs/d, for 7 d) and half received sham IH sessions. An additional group of rats received MCAO, IH, and injections of the neurogenesis-impairing agent 3′-AZT. Spatial learning and memory was measured in the Morris water maze, and hippocampal neurogenesis and c-Fos expression were examined. Hypoxia-inducible factor 1α (HIF-1α) and phosphorylated mitogen-activated protein kinase (pMAPK) were considered as possible mediators of IH-induced changes in neurogenesis and c-Fos expression. IH intervention following MCAO resulted in recovered spatial memory, increased hippocampal neurogenesis, and increased expression of c-Fos in newborn hippocampal cells. These effects were blocked by 3′-AZT. IH intervention following MCAO also was associated with increased hippocampal pMAPK and HIF-1α expression.Conclusions/SignificanceIH intervention following MCAO rescued ischemia-induced spatial learning and memory impairments, likely by inducing hippocampal neurogenesis and c-Fos expression through mediators including pMAPK and HIF-1α
The effects of oxytocin (OT) on gastric emptying and plasma levels of cholecystokinin (CCK) were studied in male rats. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal and Na2(51)CrO4. Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Blood samples were collected for OT and CCK radioimmunoassay. After administration of OT (0.2-0.8 mg x kg(-1)), gastric emptying was inhibited, whereas plasma concentrations of OT and CCK were increased in a dose-dependent manner. Atosiban, an oxytocin receptor antagonist, effectively attenuated the OT-induced inhibition of gastric emptying. However, administration of atosiban alone had no effect on gastric emptying. Devazepide (3 mg x kg(-1)), a selective CCKA receptor antagonist, effectively attenuated the OT-induced inhibition of gastric emptying. L-365, 260, a selective CCKB receptor antagonist, did not alter the OT-induced inhibition of gastric emptying. These results suggest that OT inhibits gastric emptying in male rats via a mechanism involving CCK stimulation and CCKA receptor activation.
Rat gastrointestinal (GI) transit parameters measured with charcoal and radiochromium were compared. Animals were fed with a calorie-free liquid test meal which contained 10% charcoal and radiochromium (0.5 µCi ml–1) via a transiently placed orogastric catheter. The rats were sacrificed at 1, 5, 15, 30, 60 and 120 min, respectively, since feeding. Various motor parameters were measured. Charcoal transit ratio, gastric emptying and geometric center were time dependent. Charcoal transit ratio occasionally showed a positive correlation with gastric emptying in the very late experimental periods. Concerning the correlation of charcoal transit ratio and geometric center, negative and positive correlations were seen in the very early and late periods, respectively. We conclude that the rat charcoal transit ratio has limited value to replace the GI transit parameters determined by feeding radiochromium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.