The current view of motor learning suggests that when we revisit a task, the brain recalls the motor commands it previously learned. In this view, motor memory is a memory of motor commands, acquired through trial-and-error and reinforcement. Here we show that the brain controls how much it is willing to learn from the current error through a principled mechanism that depends on the history of past errors. This suggests that the brain stores a previously unknown form of memory, a memory of errors. A mathematical formulation of this idea provides insights into a host of puzzling experimental data, including savings and meta-learning, demonstrating that when we are better at a motor task, it is partly because the brain recognizes the errors it experienced before.
If we assume that the purpose of a movement is to acquire a rewarding state, the duration of the movement carries a cost because it delays acquisition of reward. For some people, passage of time carries a greater cost, as evidenced by how long they are willing to wait for a rewarding outcome. These steep discounters are considered impulsive. Is there a relationship between cost of time in decision making and cost of time in control of movements? Our theory predicts that people who are more impulsive should in general move faster than subjects who are less impulsive. To test our idea, we considered elementary voluntary movements: saccades of the eye. We found that in humans, saccadic vigor, assessed using velocity as a function of amplitude, was as much as 50% greater in one subject than another; that is, some people consistently moved their eyes with high vigor. We measured the cost of time in a decision-making task in which the same subjects were given a choice between smaller odds of success immediately and better odds if they waited. We measured how long they were willing to wait to obtain the better odds and how much they increased their wait period after they failed. We found that people that exhibited greater vigor in their movements tended to have a steep temporal discount function, as evidenced by their waiting patterns in the decision-making task. The cost of time may be shared between decision making and motor control.
IntroductionAccording to the World Health Organization (WHO), burns result in the loss of approximately 18 million disability adjusted life years (DALYs) and more than 250,000 deaths each year, more than 90% of which are in low- and middle-income countries (LMICs). The epidemiology of these injuries, especially in the WHO-defined African Region, has yet to be adequately defined.MethodsWe performed a systematic review of the literature regarding the epidemiology of thermal, chemical, and electrical burns in the WHO-defined African Region. All articles indexed in PubMed, EMBASE, Web of Science, Global Health, and the Cochrane Library databases as of October 2015 were included.ResultsThe search resulted in 12,568 potential abstracts. Through multiple rounds of screening using criteria determined a priori, 81 manuscripts with hospital-based epidemiology as well as eleven manuscripts that included population-based epidemiology were identified. Although the studies varied in methodology, several trends were noted: young children appear to be at most risk; most individuals were burned at home; and hot liquids and flame are the most common aetiologies.DiscussionWhile more population-based research is essential to identifying specific risk factors for targeted prevention strategies, our review identifies consistent trends for initial efforts at eliminating these often devastating and avoidable injuries.
When motor commands are accompanied by an unexpected outcome, the resulting error induces changes in subsequent commands. However, when errors are artificially eliminated, changes in motor commands are not sustained but show decay. Why does the adaptation-induced change in motor output decay in the absence of error? A prominent idea is that decay reflects the stability of the memory. We show results that challenge this idea and instead suggest that motor output decays because the brain actively disengages a component of the memory. Humans adapted their reaching movements to a perturbation and were then introduced to a long period of trials in which errors were absent (error-clamp). We found that, in some subjects, motor output did not decay at the onset of the error-clamp block but a few trials later. We manipulated the kinematics of movements in the error-clamp block and found that, as movements became more similar to subjects' natural movements in the perturbation block, the lag to decay onset became longer and eventually reached hundreds of trials. Furthermore, when there was decay in the motor output, the endpoint of decay was not zero but a fraction of the motor memory that was last acquired. Therefore, adaptation to a perturbation installed two distinct kinds of memories: (1) one that was disengaged when the brain detected a change in the task and (2) one that persisted despite it. Motor memories showed little decay in the absence of error if the brain was prevented from detecting a change in task conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.