Parkinson's disease is a movement disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Dopaminergic neuronal loss also occurs in Drosophila melanogaster upon directed expression of alpha-synuclein, a protein implicated in the pathogenesis of Parkinson's disease and a major component of proteinaceous Lewy bodies. We report that directed expression of the molecular chaperone Hsp70 prevented dopaminergic neuronal loss associated with alpha-synuclein in Drosophila and that interference with endogenous chaperone activity accelerated alpha-synuclein toxicity. Furthermore, Lewy bodies in human postmortem tissue immunostained for molecular chaperones, also suggesting that chaperones may play a role in Parkinson's disease progression.
In the late 1990s, mutations in the synaptic protein α-synuclein (α-syn) were identified in families with hereditary Parkinson's disease (PD). Rapidly, α-syn became the target of numerous investigations that have transformed our understanding of the pathogenesis underlying this disorder. α-Syn is the major component of Lewy bodies (LBs), cytoplasmic protein aggregates that form in the neurons of PD patients. α-Syn interacts with lipid membranes and adopts amyloid conformations that deposit within LBs. Work in yeast and other model systems has revealed that α-syn-associated toxicity might be the consequence of abnormal membrane interactions and alterations in vesicle trafficking. Here we review evidence regarding α-syn's normal interactions with membranes and regulation of synaptic vesicles as well as how overexpression of α-syn yields global cellular dysfunction. Finally, we present a model linking vesicle dynamics to toxicity with the sincere hope that understanding these disease mechanisms will lead to the development of novel, potent therapeutics.
The induced pluripotent stem (iPS) cell field promises a new era for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to human to discover and reverse phenotypic responses to α-Synuclein (αSyn), a key protein involved in Parkinson’s disease (PD). We generated cortical neurons from iPS cells of patients harboring αSyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αSyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of ER-associated degradation (ERAD) substrates and ER stress. A small molecule identified in a yeast screen, and the ubiquitin ligase Nedd4 it activates, reversed pathologic phenotypes in these neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.