Incremental progress in humanoid robot locomotion over the years has achieved important capabilities such as navigation over flat or uneven terrain, stepping over small obstacles and climbing stairs. However, the locomotion research has mostly been limited to using only bipedal gait and only foot contacts with the environment, using the upper body for balancing without considering additional external contacts. As a result, challenging locomotion tasks like climbing over large obstacles relative to the size of the robot have remained unsolved. In this paper, we address this class of open problems with an approach based on multi-body contact motion planning guided through physical human demonstrations. Our goal is to make the humanoid locomotion problem more tractable by taking advantage of objects in the surrounding environment instead of avoiding them. We propose a multi-contact motion planning algorithm for humanoid robot locomotion which exploits the whole-body motion and multi-body contacts including both the upper and lower body limbs. The proposed motion planning algorithm is applied to a challenging task of climbing over a large obstacle. We demonstrate successful execution of the climbing task in simulation using our multi-contact motion planning algorithm initialized via a transfer from real-world human demonstrations of the task and further optimized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.