The last decade saw a surge in digitisation efforts for ancient manuscripts in Sanskrit. Due to various linguistic peculiarities inherent to the language, even the preliminary tasks such as word segmentation are non-trivial in Sanskrit. Elegant models for Word Segmentation in Sanskrit are indispensable for further syntactic and semantic processing of the manuscripts. Current works in word segmentation for Sanskrit, though commendable in their novelty, often have variations in their objective and evaluation criteria. In this work, we set the record straight. We formally define the objectives and the requirements for the word segmentation task. In order to encourage research in the field and to alleviate the time and effort required in pre-processing, we release a dataset of 115,000 sentences for word segmentation. For each sentence in the dataset we include the input character sequence, ground truth segmentation, and additionally lexical and morphological information about all the phonetically possible segments for the given sentence. In this work, we also discuss the linguistic considerations made while generating the candidate space of the possible segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.