An accurate and timely forecast of extreme events can mitigate negative impacts and enhance preparedness. Real-time forecasting of extreme flood events with longer lead times is difficult for regions with sparse rain gauges, and in such situations, satellite precipitation could be a better alternative. Machine learning methods have shown promising results for flood forecasting with minimum variables indicating the underlying nonlinear complex hydrologic system. Integration of machine learning methods in extreme event forecasting motivates us to develop reliable flood forecasting models that are simple, accurate, and applicable in data scare regions. In this study, we develop a forecasting method using the satellite precipitation product and wavelet-based machine learning models. We test the proposed approach in the flood-prone Vamsadhara river basin, India. The validation results show that the proposed method is promising and has the potential to forecast extreme flood events with longer lead times in comparison with the other benchmark models.
Intrinsic predictability is imperative to quantify inherent information contained in a time series and assists in evaluating the performance of different forecasting methods to get the best possible prediction. Model forecasting performance is the measure of the probability of success. Nevertheless, model performance or the model does not provide understanding for improvement in prediction. Intuitively, intrinsic predictability delivers the highest level of predictability for a time series and informative in unfolding whether the system is unpredictable or the chosen model is a poor choice. We introduce a novel measure, the Wavelet Entropy Energy Measure (WEEM), based on wavelet transformation and information entropy for quantification of intrinsic predictability of time series. To investigate the efficiency and reliability of the proposed measure, model forecast performance was evaluated via a wavelet networks approach. The proposed measure uses the wavelet energy distribution of a time series at different scales and compares it with the wavelet energy distribution of white noise to quantify a time series as deterministic or random. We test the WEEM using a wide variety of time series ranging from deterministic, non-stationary, and ones contaminated with white noise with different noise-signal ratios. Furthermore, a relationship is developed between the WEEM and Nash–Sutcliffe Efficiency, one of the widely known measures of forecast performance. The reliability of WEEM is demonstrated by exploring the relationship to logistic map and real-world data.
Rainfall–runoff models are valuable tools for flood forecasting, management of water resources, and drought warning. With the advancement in space technology, a plethora of satellite precipitation products (SPPs) are available publicly. However, the application of the satellite data for the data-driven rainfall–runoff model is emerging and requires careful investigation. In this work, two satellite rainfall data sets, namely Global Precipitation Measurement-Integrated Multi-Satellite Retrieval Product V6 (GPM-IMERG) and Climate Hazards Group Infrared Precipitation with Station (CHIRPS), are evaluated for the development of rainfall–runoff models and the prediction of 1-day ahead streamflow. The accuracy of the data from the SPPs is compared to the India Meteorological Department (IMD)-gridded precipitation data set. Detection metrics showed that for light rainfall (1–10 mm), the probability of detection (POD) value ranges between 0.67 and 0.75 and with an increasing rainfall range, i.e., medium and heavy rainfall (10–50 mm and >50 mm), the POD values ranged from 0.24 to 0.45. These results indicate that the satellite precipitation performs satisfactorily with reference to the IMD-gridded data set. Using the daily precipitation data of nearly two decades (2000–2018) over two river basins in India's Eastern part, artificial neural network, extreme learning machine (ELM), and long short-time memory (LSTM) models are developed for rainfall–runoff modelling. One-day ahead runoff prediction using the developed rainfall–runoff modelling confirmed that both the SPPs are sufficient to drive the rainfall–runoff models with a reasonable accuracy estimated using the Nash–Sutcliffe Efficiency coefficient, correlation coefficient, and the root-mean-squared error. In particular, the 1-day streamflow forecasts for the Vamsadhara river basin (VRB) using LSTM with GPM-IMERG inputs resulted in NSC values of 0.68 and 0.67, while ELM models for Mahanadhi river basin (MRB) with the same input resulted in NSC values of 0.86 and 0.87, respectively, during training and validation stages. At the same time, the LSTM model with CHIRPS inputs for the VRB resulted in NSC values of 0.68 and 0.65, and the ELM model with CHIRPS inputs for the MRB resulted in NSC values of 0.89 and 0.88, respectively, in training and validation stages. These results indicated that both the SPPs could reliably be used with LSTM and ELM models for rainfall–runoff modelling and streamflow prediction. This paper highlights that deep learning models, such as ELM and LSTM, with the GPM-IMERG products can lead to a new horizon to provide flood forecasting in flood-prone catchments.
With the increasing stress on water resources for a developing country like India, it is pertinent to understand the dominant streamflow patterns for effective planning and management activities. This study investigates the spatiotemporal characterization of streamflow of six unregulated catchments in India. Firstly, Mann Kendall (MK) and Changepoint analysis were carried out to detect the presence of trends and any abrupt changes in hydroclimatic variables in the chosen streamflows. To unravel the relationships between the temporal variability of streamflow and its association with precipitation and global climate indices, namely, Niño 3.4, IOD, PDO, and NAO, continuous wavelet transform is used. Cross-wavelet transform and wavelet coherence analysis was also used to capture the coherent and phase relationships between streamflow and climate indices. The continuous wavelet transforms of streamflow data revealed that intra-annual (0.5 years), annual (1 year), and inter-annual (2–4 year) oscillations are statistically significant. Furthermore, a better understanding of the in-phase relationship between the streamflow and precipitation at intra-annual and annual time scales were well-captured using wavelet coherence analysis compared to cross wavelet transform. Furthermore, our analysis also revealed that streamflow observed an in-phase relationship with IOD and NAO, whereas a lag correlation with Niño 3.4 and PDO indices at intra-annual, annual and interannual time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.