Decision tree is a known classification technique in machine learning. It is easy to understand and interpret and widely used in known real world applications. Decision tree (DT) faces several challenges such as class imbalance, overfitting and curse of dimensionality. Current study addresses curse of dimensionality problem using partitioning technique. It uses partitioning technique, where features are divided into multiple sets and assigned into each block based on mutual exclusive property. It uses Genetic algorithm to select the features and assign the features into each block based on the ferrer diagram to build multiple CART decision tree. Majority voting technique used to combine the predicted class from the each classifier and produce the major class as output. The novelty of the method is evaluated with 4 datasets from UCI repository and shows approximately 9%, 3% and 5% improvement as compared with CART, Bagging and Adaboost techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.