Sanguinarine (SGR) exists in charged iminium (SGRI) and neutral alkanolamine (SGRA) forms. The binding of these two forms to the protein lysozyme (Lyz) was investigated by fluorescence, UV-vis absorbance and circular dichroism spectroscopy, and in silico molecular docking approaches. Binding thermodynamics were studied by microcalorimetry. Both forms of sanguinarine quenched the intrinsic fluorescence of Lyz, but the quenching efficiencies varied on the basis of binding that was derived after correction for an inner-filter effect. The equilibrium binding constants at 25 ± 1.0 °C for the iminium and alkanolamine forms were 1.17 × 10(5) and 3.32 × 10(5) M(-1), respectively, with approximately one binding site for both forms of the protein. Conformational changes of the protein in the presence of SGR were confirmed by absorbance, circular dichroism, three-dimensional fluorescence, and synchronous fluorescence spectroscopy. Microcalorimetry data revealed that SGRI binding is endothermic and predominantly involves electrostatic and hydrophobic interactions, whereas SGRA binding is exothermic and dominated by hydrogen-bonding interactions. The molecular distances (r) of 3.27 and 3.04 nm between the donor (Lyz) and the SGRI and SGRA acceptors, respectively, were calculated according to Förster's theory. These data suggested that both forms were bound near the Trp-62/63 residues of Lyz. Stronger binding of SGRA than SGRI was apparent from the results of both structural and thermodynamic experiments. Molecular docking studies revealed that the putative binding site for the SGR analogues resides at the catalytic site. The docking results are in accordance with the spectroscopic and thermodynamic data, further validating the stronger binding of SGRA over SGRI to Lyz. The binding site is situated near a deep crevice on the protein surface and is close to several crucial amino acid residues, including Asp-52, Glu-35, Trp-62, and Trp-63. This study advances our knowledge of the structural nature and thermodynamic aspects of binding between the putative anticancer alkaloid sanguinarine and lysozyme.
The binding of the iminium and alkanolamine forms of chelerythrine to lysozyme (Lyz) was investigated by spectroscopy and docking studies. The thermodynamics of the binding was studied by calorimetry. Spectroscopic evidence suggested that Trp-62 and Trp-63 in the β-domain of the protein are closer to the binding site; moreover, the binding site was at a distance of 2.27 and 2.00 nm from the iminium and alkanolamine forms, respectively, according to the Forster theory of non-radiation energy transfer. The equilibrium binding constants for the iminium and alkanolamine forms at 298 K were evaluated to be 1.29 × 10(5) and 7.79 × 10(5) M(-1), respectively. The binding resulted in an alteration of the secondary structure of the protein with a distinct reduction of the helical organization. The binding of iminium was endothermic, involving electrostatic and hydrophobic interactions, while that of alkanolamine form was exothermic and dominated by hydrogen bonding interactions. Docking studies provided the atomistic details pertaining to the binding of both forms of chelerythrine and supported the higher binding in favour of the alkanolamine over the iminium. Furthermore, molecular dynamics study provided accurate insights regarding the binding of both chelerythrine forms in accordance with the experimental results obtained. Chelerythrine binding pocket involves the catalytic region and aggregation prone K-peptide region, which are sandwiched between one another. Overall, these results suggest that both the forms of the alkaloid bind to the protein but the neutral form has higher affinity than the cationic form.
Rheum emodi is used as a culinary plant across the world and finds an eminent role in the Ayurvedic and traditional Chinese systems of medicine. The plant is known to principally contain 1,8-dihydroxyanthraquinones (DHAQs) like rhein, aloe emodin, emodin, chrysophanol and physcion that possess diverse pharmacological and therapeutic actions. The present work deals with developing a platform technology for isolation of these DHAQs and evaluating their anti-diabetic potential. Herein, we report the anti-hyperglycemic activity and alpha glucosidase (AG) inhibitory actions of five isolated DHAQs from R. emodi. All the five isolated DHAQs showed good anti-hyperglycemic activity with aloe emodin exhibiting maximum lowering of blood glucose in an oral glucose tolerance test. However, on evaluation of the AG inhibitory potential of the DHAQs only emodin exhibited potent intestinal AG inhibition (93 ± 2.16%) with an IC50 notably lower than acarbose. Subsequent kinetic studies indicated a mixed type of inhibition for emodin. In vivo studies using oral maltose load showed almost total inhibition for emodin when compared to acarbose. Molecular docking studies revealed the presence of an allosteric topographically distinct 'quinone binding site' and showed that interaction with Ser 74 occurs exclusively with emodin, which is vital for AG inhibition. The net benefit from the glucose lowering effect and mixed type inhibition by emodin would enable the administration of a small dosage that is safe and non-toxic in the case of prolonged use in treating diabetes.
Background: Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. Objective: The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. Method: This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. Results: This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. Conclusion: The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.
Recent disclosure of high resolution crystal structures of Gloeobacter violaceus (GLIC) in open state and Erwinia chrysanthemii (ELIC) in closed state provides newer avenues to advance our knowledge and understanding of the physiologically and pharmacologically important ionotropic GABA(A) ion channel. The present modeling study envisions understanding the complex molecular transitions involved in ionic conductance, which were not evident in earlier disclosed homology models. In particular, emphasis was put on understanding the structural basis of gating, gating transition from the closed to the open state on an atomic scale. Homology modeling of two different physiological states of GABA(A) was carried out using their respective templates. The ability of induced fit docking in breaking the critical inter residue salt bridge (Glu155β(2) and Arg207β(2)) upon endogenous GABA docking reflects the perceived side chain rearrangements that occur at the orthosteric site and consolidate the quality of the model. Biophysical calculations like electrostatic mapping, pore radius calculation, ion solvation profile, and normal-mode analysis (NMA) were undertaken to address pertinent questions like the following: How the change in state of the ion channel alters the electrostatic environment across the lumen; How accessible is the Cl(-) ion in the open state and closed state; What structural changes regulate channel gating. A "Twist to Turn" global motion evinced at the quaternary level accompanied by tilting and rotation of the M2 helices along the membrane normal rationalizes the structural transition involved in gating. This perceived global motion hints toward a conserved gating mechanism among pLGIC. To paraphrase, this modeling study proves to be a reliable framework for understanding the structure function relationship of the hitherto unresolved GABA(A) ion channel. The modeled structures presented herein not only reveal the structurally distinct conformational states of the GABA(A) ion channel but also explain the biophysical difference between the respective states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.