Many applications in surveillance, monitoring, scientific discovery, and data cleaning require the identification of anomalies. Although many methods have been developed to identify statistically significant anomalies, a more difficult task is to identify anomalies that are both interesting and statistically significant. Category detection is an emerging area of machine learning that can help address this issue using a "human-in-the-loop" approach. In this interactive setting, the algorithm asks the user to label a query data point under an existing category or declare the query data point to belong to a previously undiscovered category. The goal of category detection is to bring to the user's attention a representative data point from each category in the data in as few queries as possible. In a data set with imbalanced categories, the main challenge is in identifying the rare categories or anomalies; hence, the task is often referred to as rare category detection. We present a new approach to rare category detection based on hierarchical mean shift. In our approach, a hierarchy is created by repeatedly applying mean shift with an increasing bandwidth on the data. This hierarchy allows us to identify anomalies in the data set at different scales, which are then posed as queries to the user. The main advantage of this methodology over existing approaches is that it does not require any knowledge of the dataset properties such as the total number of categories or the prior probabilities of the categories. Results on real-world data sets show that our hierarchical mean shift approach performs consistently better than previous techniques.
This paper investigates using social tags for the purpose of making personalized content recommendations. Our tag-based recommender creates a personalized bookmark recommendation model for each user based on "current" and "general interest" tags, defined by different time intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.