Internet of Things (IoT) systems are becoming ubiquitous in various cyber–physical infrastructures, including buildings, vehicular traffic, goods transport and delivery, manufacturing, health care, urban farming, etc. Often multiple such IoT subsystems are deployed in the same physical area and designed, deployed, maintained, and perhaps even operated by different vendors or organizations (or “parties”). The collective operational behavior of multiple IoT subsystems can be characterized via (1) a set of operational rules and required safety properties and (2) a collection of IoT-based services or applications that interact with one another and share concurrent access to the devices. In both cases, this collective behavior often leads to situations where their operation may conflict, and the conflict resolution becomes complex due to lack of visibility into or understanding of the cross-subsystem interactions and inability to do cross-subsystem actuations. This article addresses the fundamental problem of detecting and resolving safety property violations. We detail the inherent complexities of the problem, survey the work already performed, and layout the future challenges. We also highlight the significance of detecting/resolving conflicts proactively, i.e., dynamically but with a look-ahead into the future based on the context.
This paper presents floating point multiplier capable of supporting wide range of application domains like scientific computing and multimedia applications and also describes an implementation of a floating point multiplier that supports the IEEE 754-2008 binary interchange format with methodology for estimating the power and speed has been developed. This Pipelined vectorized floating point multiplier supporting FP16, FP32, FP64 input data and reduces the area, power, latency and increases throughput. Precision can be implemented by taking the 128 bit input operands.The floating point units consumeless power and small part of total area. Graphic Processor Units (GPUS) are specially tuned for performing a set of operations on large sets of data. This paper also presents the design of a Double precision floating point multiplication algorithm with vector support. The single precision floating point multiplier is having a path delay of 72ns and also having the operating frequency of 13.58MHz.Finally this implementation is done in Verilog HDL using Xilinx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.