Perception and cognition are modulated by the phase of the cardiac signal in which the stimuli are presented. This has been shown by locking the presentation of stimuli to distinct cardiac phases. However, in everyday life sensory information is not presented in this passive and phase-locked manner, instead we actively move and control our sensors to perceive the world. Whether active sensing is coupled and modulated with the cardiac cycle remains largely unknown. Here we recorded the electrocardiograms of human participants while they actively performed a tactile grating orientation task. We show that the duration of subjects' touch varied as a function of the cardiac phase in which they initiated it. Touches initiated in the systole phase were held for longer periods of time than touches initiated in the diastole phase. This effect was most pronounced when elongating the duration of the touches to sense the most difficult gratings. Conversely, while touches in the control condition were coupled to the cardiac cycle, their length did not vary as a function of the phase in which these were initiated. Our results reveal that we actively spend more time sensing during systole periods, the cardiac phase associated with lower perceptual sensitivity (vs. diastole). In line with interoceptive inference accounts, these results indicate that we actively adjust the acquisition of sense data to our internal bodily cycles.
Perception and cognition are modulated by the phase of the cardiac signal in which the stimuli are presented. This has been shown by locking the presentation of stimuli to distinct cardiac phases. However, in everyday life sensory information is not presented in this phase-locked and passive manner, instead we actively sample the world. Whether active sensing is coupled and modulated with the cardiac cycle remains largely unknown. Here we recorded the ECGs of human participants while they actively performed a tactile grating orientation task. Here we show that the duration of subjects' touch varied as a function of the cardiac phase in which they initiated it. Touches initiated in the systolic phase of the cardiac cycle were held for longer periods of time than touches initiated in the diastolic phase. This effect was driven by the elongation of their holds to sample the most difficult gratings. Conversely, while touches in the control condition were coupled to the cardiac cycle, their length was not modulated as a function of when in the cycle these were initiated. In line with interoceptive inference accounts, these results are consistent with the hypotheses that we actively adjust our sensory sampling so that we spend more time in the diastole period of the cardiac cycle in which perceptual sensory sensitivity is greatest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.