Separation of toxic organic pollutants from industrial effluents is a great environmental challenge. Herein, an acid-base engineered foam is employed for separation of micro-oil droplets from an aqueous solution. In acidic or basic environments, acid-base polymers acquire surface charge due to protonation or dissociation of surface active functional groups. This property is invoked to adsorb crude oil microdroplets from water using polyester polyurethane (PESPU) foam. The physicochemical surface properties of the foam were characterized using X-ray photoelectron spectroscopy, inverse gas chromatography, electrokinetic analysis, and micro-computed tomography. Using the surface charge of the foam and oil droplets, the solution pH (5.6) for maximum separation efficacy was predicted. This optimal pH was verified through underwater wetting behavior and adsorption experiments. The droplet adsorption onto the foam was governed by physisorption, and the driving forces were attributed to electrostatic attraction and Lifshitz-van der Waals forces. The foam was regenerated and reused multiple times by simple compression. The lowest trace oil content in the retentate was 3.6 mg L, and all oil droplets larger than 140 nm were removed. This work lays the foundation for the development of a new class of engineered foam adsorbents with the potential to revolutionize water treatment technologies.
Energy-efficient recovery of oil droplets from ice-cold water, such as oil sands tailings, marine, and arctic oil spills, is challenging. In particular, due to paraffin wax crystallization at low temperatures, the crude oil exhibits high viscosity, making it difficult to collect using simple solutions like sponges. Here, we report a wax-wetting sponge designed by conforming to the thermoresponsive microstructure of crude oil droplets. To address paraffin wax crystallization, we designed the sponge by coating a polyester polyurethane substrate with nanosilicon functionalized with paraffin-like octadecyl ligands. The wax-wetting sponge can adsorb oil droplets from wastewater between 5° and 40°C with 90 to 99% removal efficacy for 10 cycles. Also, upon rinsing with heptol, the adsorbed oil is released within seconds. The proposed approach of sponges designed to conform with the temperature-dependent microstructure of the crude oils could enable cold water technologies and improve circular economy metrics in the oil industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.