The neuropeptidase glutamate carboxypeptidase II (GCPII) hydrolyzes N-acetyl-L-aspartyl-L-glutamate (NAAG) to liberate N-acetylaspartate and glutamate. GCPII was originally cloned as PSMA, an M(r) 100,000 type II transmembrane glycoprotein highly expressed in prostate tissues. PSMA/GCPII is located on the short arm of chromosome 11 and functions as both a folate hydrolase and a neuropeptidase. Inhibition of brain GCPII may have therapeutic potential in the treatment of certain disease states arising from pathologically overactivated glutamate receptors. Recently, we reported that certain urea-based structures act as potent inhibitors of GCPII (J. Med. Chem. 2001, 44, 298). However, many of the potent GCPII inhibitors prepared to date are highly polar compounds and therefore do not readily penetrate the blood-brain barrier. Herein, we elaborate on the synthesis of a series of potent, urea-based GCPII inhibitors from the lead compound 3 and provide assay data for these ligands against human GCPII. Moreover, we provide data revealing the ability of one of these compounds, namely, 8d, to reduce the perception of inflammatory pain. Within the present series, the gamma-tetrazole bearing glutamate isostere 7d is the most potent inhibitor with a K(i) of 0.9 nM. The biological evaluation of these compounds revealed that the active site of GCPII likely comprises two regions, namely, the pharmacophore subpocket and the nonpharmacophore subpocket. The pharmacophore subpocket is very sensitive to structural changes, and thus, it appears important to keep one of the glutamic acid moieties intact to maintain the potency of the GCPII inhibitors. The site encompassing the nonpharmacophore subpocket that binds to glutamate's alpha-carboxyl group is sensitive to structural change, as shown by compounds 6b and 7b. However, the other region of the nonpharmacophore subpocket can accommodate both hydrophobic and hydrophilic groups. Thus, an aromatic ring can be introduced to the inhibitor, as in 8b and 8d, thereby increasing its hydrophobicity and thus potentially its ability to cross the blood-brain barrier. Intrathecally administered 8d significantly reduced pain perception in the formalin model of rat sensory nerve injury. A maximal dose of morphine (10 mg) applied in the same experimental paradigm provided no significant increase in analgesia in comparison to 8d during phase 1 of this pain study and modestly greater analgesia than 8d in phase 2. These urea-based inhibitors of GCPII thus offer a novel approach to pain management.
The regulation of estrogenic and antiestrogenic effects of selective estrogen receptor modulators (SERMs) is thought to underlie their clinical use. Most SERMs are polyaromatic phenols susceptible to oxidative metabolism to quinoids, which are proposed to be genotoxic. Conversely, the redox reactivity of SERMs may contribute to antioxidant and chemopreventive mechanisms, providing a new approach to improve the therapeutic properties of SERMs. An improved synthetic strategy was developed to generate a family of benzothiophene SERMs. Using computational modeling methods and measurements of antioxidant activity and estrogen receptor (ER) ligand binding, this SERM family was shown to provide both a range of ERalpha/ERbeta selectivity from 1.2- to 67-fold and a range of redox activity. Antioxidant activity was successfully modulated by varying a substituent remote from the OH group; the source of the antioxidant capacity. An efficient synthetic procedure is reported yielding benzothiophene SERMs wherein redox activity and ER affinity are modulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.