Radical cations of heptane and octane isomers, as well as several longer branched alkanes, were detected in irradiated n-hexane solutions at room temperature by the method of time-resolved magnetic field effect (TR MFE). To identify radical cations, the hyperfine coupling constants as determined by simulation of the TR MFE curves were compared to the constants calculated using the density functional theory (DFT) approach. The g-values of the observed radical cations were close to that of the 2,2,3,3-tetramethylbutane radical cation studied earlier by optically detected electron spin resonance (ESR) and TR MFE techniques. No evidence of the decay of the radical cations of branched alkanes to produce olefin radical cations was found, which was further supported by the observation of positive charge transfer from the observed radical cations to cycloalkane molecules. The lifetimes of the radical cations of the branched alkanes were found to be longer than tens of nanoseconds.
Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of the interaction between the radical and the solvent. The magnitude of these fluctuations, ~100 cm(-1), determines the upper scale of the unperturbed splitting between the vibronic states, for which the manifestation of this paramagnetic relaxation mechanism could be expected. Our estimate for the relaxation rate derived using standard Landau-Zener model of nonadiabatic transitions at the level crossing agrees with the experimental data. This paramagnetic relaxation mechanism can also be operative in paramagnetic species of other types such as linear radicals, radicals with threefold degeneracy, paramagnetic centers in crystals, etc. It looks likely that the proposed SLR mechanism can be quenched by a fast vibrational relaxation in radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.