The paper demonstrates the feasibility of using iodine as propellant for thrusters with closed electron drift and its economic viability. It describes a test setup for running experiments. It provides the results of experimental studies of the stationary plasma thruster using iodine as its propellant with xenon gas-passage hollow cathode, as well as of the operational mode of the thruster where a mixture of xenon and iodine is used. During tests gas dynamic and electrical properties of the thruster were analyzed. Thermal conditions in the iodine storage and supply system were studied. Conclusions were drawn on how the test object could be improved and upgraded. The paper describes the option to use a thermionic non-flow cathode as the compensator cathode for the operation of the iodine thruster. The paper provides the results of an experimental study of the prototype non-flow compensator cathode in diode mode. Based on the results of the studies an experimental facility was built for testing a thruster with non-flow compensator cathode. Key words: cathode, compensator cathode, thruster with closed electron drift, stationary plasma thruster, iodine.
In the article the analysis of iodine as a propellant electric propulsion for electric thruster with closed electron drift is provided. This compares the iodine thruster performance with the same parameters using the traditional propellant - xenon. Advantages of electro-propulsion on the iodine compared to installing, using xenon. Justified the use of iodine as a propellant for high power thrusters. Presents the preliminary design and the results of the first tests of stationary plasma thrusters on the iodine. The article provides information about the progress of RSC Energia corporate research, the purpose of which is to develop a bench-top system for the storage and supply of iodine. It is shown and described the system layout storage and supply for experimental testing electric propulsion on the iodine. Also shown plans of RSC Energia in further research on the development of electric propulsion on the iodine. The article presents a variant of the high power thrusters on a propellant of iodine, which offers the challenge of ensuring the life of the thruster and the use of thermionic cathode. This article provides an overview of Western achievements in the use of propellant iodine in electric thruster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.