Flow monitoring has become a prevalent method for monitoring traffic in high-speed networks. By focusing on the analysis of flows, rather than individual packets, it is often said to be more scalable than traditional packet-based traffic analysis. Flow monitoring embraces the complete chain of packet observation, flow export using protocols such as NetFlow and IPFIX, data collection, and data analysis. In contrast to what is often assumed, all stages of flow monitoring are closely intertwined. Each of these stages therefore has to be thoroughly understood, before being able to perform sound flow measurements. Otherwise, flow data artifacts and data loss can be the consequence, potentially without being observed. This paper is the first of its kind to provide an integrated tutorial on all stages of a flow monitoring setup. As shown throughout this paper, flow monitoring has evolved from the early nineties into a powerful tool, and additional functionality will certainly be added in the future. We show, for example, how the previously opposing approaches of Deep Packet Inspection and flow monitoring have been united into novel monitoring approaches.
Summary With the widespread use of encrypted data transport, network traffic encryption is becoming a standard nowadays. This presents a challenge for traffic measurement, especially for analysis and anomaly detection methods, which are dependent on the type of network traffic. In this paper, we survey existing approaches for classification and analysis of encrypted traffic. First, we describe the most widespread encryption protocols used throughout the Internet. We show that the initiation of an encrypted connection and the protocol structure give away much information for encrypted traffic classification and analysis. Then, we survey payload and feature‐based classification methods for encrypted traffic and categorize them using an established taxonomy. The advantage of some of described classification methods is the ability to recognize the encrypted application protocol in addition to the encryption protocol. Finally, we make a comprehensive comparison of the surveyed feature‐based classification methods and present their weaknesses and strengths. Copyright © 2015 John Wiley & Sons, Ltd.
This paper provides a survey of prediction, and forecasting methods used in cyber security. Four main tasks are discussed first, attack projection and intention recognition, in which there is a need to predict the next move or the intentions of the attacker, intrusion prediction, in which there is a need to predict upcoming cyber attacks, and network security situation forecasting, in which we project cybersecurity situation in the whole network. Methods and approaches for addressing these tasks often share the theoretical background and are often complementary. In this survey, both methods based on discrete models, such as attack graphs, Bayesian networks, and Markov models, and continuous models, such as time series and grey models, are surveyed, compared, and contrasted. We further discuss machine learning and data mining approaches, that have gained a lot of attention recently and appears promising for such a constantly changing environment, which is cyber security. The survey also focuses on the practical usability of the methods and problems related to their evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.