Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.
The effect of hydrothermal treatment on properties (crystallinity, porous structure, reducibility, acidity, basicity, and catalytic activity and selectivity in toluene and ethanol total oxidation) of Ni—Al layered double hydroxide precursors and related mixed oxides was examined. The hydrothermal treatment increased considerably both the content of crystalline phase and LDH crystallite size. On the other hand, only a slight effect of the precursor hydrothermal treatment on crystallinity of the related Ni—Al mixed oxides obtained by calcination at 450°C was observed. The reducibility of NiO particles appeared to be hindered considerably compared to the reducibility of pure NiO. Catalytic activity of the Ni—Al mixed oxides prepared from the precursors hydrothermally treated for a short time (4 h) was the highest. The highest amount of acetaldehyde formed during the total oxidation of ethanol, i.e. the worst selectivity was found for the calcined Ni—Al LDH without hydrothermal treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.