Indole-containing acids—tryptophan metabolites—found in serum and cerebrospinal fluid (CSF) samples of patients with diseases of the central nervous system (CNS) were determined with the use of microextraction by packed sorbent (MEPS) followed by silylation and gas chromatography–mass spectrometry (GC–MS) analysis. MEPS with the following silylation led to the reproducible formation of derivatives with an unsubstituted hydrogen ion in the indole ring, the chromatographic peaks of which are symmetric and can be used for GC–MS analysis without additional derivatization. The recoveries of analytes at the limit of quantitation (LOQ) levels were 40–80% for pooled CSF and 40–60% for serum. The limit of detection (LOD) and LOQ values were 0.2–0.4 and 0.4–0.5 µM, respectively, for both CSF and serum. The precision (the reproducibility, RSD) value of less than 20% and the accuracy (the relative error, RE) value of less than ±20% at the LOQ concentrations meet the Food and Drug Administration (FDA) recommendations. Linear correlations for all analytes were determined over a potentially clinically significant range of concentrations (0.4–10 µM for serum, R2 ≥ 0.9942, and 0.4–7 µM for CSF, R2 ≥ 0.9949). Moreover, MEPS significantly reduced the matrix effect of serum compared to liquid–liquid extraction (LLE), which was revealed in the example of reducing the amount of cholesterol and its relative compounds.
Propylene epoxidation with hydrogen peroxide on titanosilicates with different Si/Ti ratios and various states of titanium in the catalysts, prepared by hydrothermal crystallization according to two different procedures, has been investigated. It has been demonstrated that a change in the pH of the crystallizing gel leads to a change in the sequence of titanium insertion in the zeolite structure at a hydrothermal synthesis temperature of 170°C. It was shown that titanium incorporated in the zeolite framework in the tetrahedral positions is an active site in the epoxidation reaction, whereas titanium in the form of titanium dioxide leads to unproductive degradation of hydrogen peroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.