Using the fibrering method, we prove the existence of multiple positive solutions of quasilinear problems of second order. The main part of our differential operator is p-Laplacian and we consider solutions both in the bounded domain Ω⊂ℝN and in the whole of ℝN. We also prove nonexistence results.
We consider resonance problems at an arbitrary eigenvalue of the p-Laplacian, and prove the existence of weak solutions assuming a standard Landesman Lazer condition. We use variational arguments to characterize certain eigenvalues and then to establish the solvability of the given boundary value problem.
A version of Sturm--Liouville theory is given for the one-dimensional p-Laplacian including the radial case. The treatment is modern but follows the strategy of Elbert's early work. Topics include a Prüfer-type transformation, eigenvalue existence, asymptotics and variational principles, and eigenfunction oscillation.
Abstract. For p 12 11 , the eigenfunctions of the non-linear eigenvalue problem for the p-Laplacian on the interval (0, 1) are shown to form a Riesz basis of L 2 (0, 1) and a Schauder basis of L q (0, 1) whenever 1 < q < ∞.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.