We report a new technique for the digital mapping of biomarkers in tissues based on desorption and counting intact gold nanoparticle (Au NP) tags using infrared laser ablation singleparticle inductively coupled plasma mass spectrometry (IR LA SP ICP MS). In contrast to conventional UV laser ablation, Au NPs are not disintegrated during the desorption process due to their low absorption at 2940 nm. A mass spectrometer detects up to 83% of Au NPs. The technique is demonstrated on mapping a proliferation marker, nuclear protein Ki-67, in three-dimensional (3D) aggregates of colorectal carcinoma cells, and the results are compared with confocal fluorescence microscopy and UV LA ICP MS. Precise counting of 20 nm Au NPs with a single-particle detection limit in each pixel by the new approach generates sharp distribution maps of a specific biomarker in the tissue. Advantageously, the desorption of Au NPs from regions outside the tissue is strongly suppressed. The developed methodology promises multiplex mapping of low-abundant biomarkers in numerous biological and medical applications using multielemental mass spectrometers.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) imaging of surfaces and tissues is a rapidly evolving technique having great potential in the field of biosciences. In earlier times, acquisition of a single high-resolution MS image could take days. Despite the recent introduction of high-repetition rate lasers to increase sample throughput of axial TOF MS instruments, obtaining a high-resolution image still requires a few hours. This paper shows that a substantial increase in the throughput of the TOF MS-based tissue imaging can be achieved by incorporating a mirror providing high-speed precision scanning of the laser beam along the sample surface. Equipped with the scanning mirror, a laboratory-built axial MALDI TOF MS instrument utilizing a 4-kHz UV laser recorded a 100 × 100 pixel MS image in ~11 min using 100 laser shots per pixel. This is almost an order of magnitude faster when compared to a modern commercial instrument equipped with 1-kHz laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.