The main constituents of plant oils are complex mixtures of TGs differing in acyl chain lengths, number and positions of double bonds, and regioisomerism. A non-aqueous reversed-phase HPLC method with acetonitrile-2-propanol gradient and 30 + 15 cm NovaPak C18 columns makes possible an unambiguous identification of the highest number of TGs ever reported for these oils, based on positive-ion APCI mass spectra. A new approach to TG quantitation is based on the use of response factors with three typical detection techniques for that purpose (APCI-MS, evaporative light-scattering detection, and UV at 205 nm). Response factors of 23 single-acid TGs (saturated TGs from C7 to C22, 7 unsaturated TGs), 4 mixed-acid TGs, diolein and monoolein are calculated from their calibration curves and related to OOO. Due to differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of TGs. 133 TGs containing 22 fatty acids with 8-25 carbon atoms and 0-3 double bonds are identified and quantified in 9 plant oils (walnut, hazelnut, cashew nut, almond, poppy seed, yellow melon, mango, fig, date) using HPLC/APCI-MS with a response factor approach. Average parameters and relative fatty acid concentrations are calculated with both HPLC/APCI-MS and GC/ FID.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.