Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.
Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins' emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates' immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.
The use of single‐cell RNA sequencing (scRNA‐seq) in microglial research is increasing rapidly. The basic workflow of this approach consists of isolating single cells, followed by sequencing. scRNA‐seq is capable of examining microglial heterogeneity on a cellular level. However, the results gained from applying this technique suffer from discrepancies due to differences between applied methods characteristics such as the number of cells sequenced and the depth of sequencing. This review aims to shed more light on the recent developments that happened in this field and how they are related to the methods used. To do that, we track the progress and limitations of various scRNA‐seq methods currently available. The review then summarizes the current knowledge gained using scRNA‐seq in the field of microglia, including novel subpopulations associated with function and development under homeostasis as well during several pathological conditions such as Alzheimer, lipopolysaccharide response, and HIV in relation to the methods employed. Our review points out that despite major developments found using this technique, current scRNA‐seq methods suffer from high cost, low yields, and nonstandardization of generated data. Additional development of scRNA‐seq methods will raise our awareness of microglia's heterogeneity and plasticity under healthy and pathological conditions.
Understanding the evolutionary relationship between immune cells and the blood–brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.
In vertebrates, thymus expression of various body proteins to eliminate autoreactive T cells during the negative selection process is orchestrated by AIRE and FEZF2. T cells first appeared in vertebrates. However, the evolutionary history of these two genes in relation to T cells emergence is still not clear. Specifically, it is still not known, whether these two genes emerged concurrently to support the negative selection process. Furthermore, whether there is an evolutionary trade-off between these two genes is not known. Whether these two genes play a similar role in controlling auto-reactivity elimination in lampreys and invertebrates is also unknown. We used a plethora of phylogenetic analysis tools including; multiple sequence alignment, phylogenetic tree building, ancestral sequence reconstruction, functional specificity investigation, and positive selection analysis to address these questions. We found that these two genes represent two distinct pathways of negative selection with two unique origins. While AIRE emerged during the divergence of T cells in vertebrates, FEZF2 is far ancient with homologs in invertebrates including Cnidaria, Trichoplax. We found that FEZF2 structure is highly conserved between invertebrates and vertebrates. Moreover, the genes controlled by both families included a mixture of ancient and recently diverged genes. However, we found that AIRE contains an LXXLL motif for binding nuclear receptors. Conversely, FEZF2 possesses several motifs known to play a role in autophagy, such as DKFPHP, SYSELWKSSL, and SYSEL. However, both genes contain similar motifs such as MAPK regulating motifs. Interestingly, AIRE seems to be lacking in lampreys, in contrast to FEZF2. Taken together, our investigation hints that FEZF2 was initially employed to control a rudimentary auto-reactivity elimination process in invertebrates, then evolved to play a part in controlling a negative selection process in early vertebrates and higher vertebrates. The emergence of AIRE seems to be correlated with controlling the negative selection process in higher vertebrates. The results demonstrate a strong evolutionary trading-off process, where FEZF2 kept controlling certain biological processes whereas AIRE gained control of others. Several critical genes are controlled by both genes, to ensure an adequate negative selection process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.