IntroductionA specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and develop such a staging method.MethodsTwenty-nine centers from 25 countries contributed 2358 patients aged 37.21 ± 11.87 years with schizophrenia. Analysis of covariance, Exploratory Factor Analysis, Discriminant Function Analysis, and inspection of resultant plots were performed.ResultsExploratory Factor Analysis returned 5 factors explaining 59% of the variance (positive, negative, excitement/hostility, depression/anxiety, and neurocognition). The staging model included 4 main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: positive; stages 2a and 2b: excitement/hostility; stage 3a and 3b: depression/anxiety; stage 4a and 4b: neurocognition). There were no differences between sexes. The Discriminant Function Analysis developed an algorithm that correctly classified >85% of patients.DiscussionThis study elaborates a 5-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.
Background Obesity is highly prevalent in schizophrenia, with implications for psychiatric prognosis, possibly through links between obesity and brain structure. In this longitudinal study in first episode of psychosis (FEP), we used machine learning and structural magnetic resonance imaging (MRI) to study the impact of psychotic illness and obesity on brain ageing/neuroprogression shortly after illness onset. Methods We acquired 2 prospective MRI scans on average 1.61 years apart in 183 FEP and 155 control individuals. We used a machine learning model trained on an independent sample of 504 controls to estimate the individual brain ages of study participants and calculated BrainAGE by subtracting chronological from the estimated brain age. Results Individuals with FEP had a higher initial BrainAGE than controls (3.39 ± 6.36 vs 1.72 ± 5.56 years; β = 1.68, t(336) = 2.59, P = .01), but similar annual rates of brain ageing over time (1.28 ± 2.40 vs 1.07±1.74 estimated years/actual year; t(333) = 0.93, P = .18). Across both cohorts, greater baseline body mass index (BMI) predicted faster brain ageing (β = 0.08, t(333) = 2.59, P = .01). For each additional BMI point, the brain aged by an additional month per year. Worsening of functioning over time (Global Assessment of Functioning; β = −0.04, t(164) = −2.48, P = .01) and increases especially in negative symptoms on the Positive and Negative Syndrome Scale (β = 0.11, t(175) = 3.11, P = .002) were associated with faster brain ageing in FEP. Conclusions Brain alterations in psychosis are manifest already during the first episode and over time get worse in those with worsening clinical outcomes or higher baseline BMI. As baseline BMI predicted faster brain ageing, obesity may represent a modifiable risk factor in FEP that is linked with psychiatric outcomes via effects on brain structure.
Available data encourage the use of LAI in forensic psychiatry, especially during court-ordered commitment treatment.
Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive.Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.