Over the past several decades, the international community has been actively engaged in developing a safe method for isolating spent nuclear fuel, high and intermediate level radioactive wase of different degrees of heat generation in deep geological formations on the basis of regulatory requirements existing in each individual country (for example, in the Russian Federation-NP-055-14). Such a storage facility should be equipped with an engineered safety barrier system that combines a range of materials capable of ensuring the safe localization of environmentally and health-threatening nuclear power generation industry and the nuclear industry waste products, in particular. On the basis of the international experience discussed in this article on the design and operation of such facilities, the most universal material in terms of the functions performed as a component of the engineered barrier system is cement and the cement-based product mixed with various components—concrete. Furthermore, due to the possible mutual influence of buffer materials and their transformation over time at interfaces, this work considers the impact of cement-based barriers on other components of engineered barrier systems, the information on which has been accumulated as a result of both analytical laboratory tests and in situ radioactive waste disposal facilities under construction.
Bentonite clays have unique properties that determine their use as the main component of engineered barrier systems (EBS) for the isolation of radioactive waste. At present, the Russian Federation is elaborating the concept of deep geological disposal of radioactive waste in crystalline rocks of the Yeniseisky site, where bentonite clays play an important role in ensuring the safety of the repository for a long period of time. This work demonstrates the first results of short-term laboratory experiments (1 and 3 months) on the thermochemical interaction of bentonite and concrete in the presence of synthetic water at an elevated temperature. These experiments will help predict the effect of EBS materials on montmorillonite. Bentonite from the 10th Khutor deposit (Russia) and Portland cement were used in the experiments. At the first stage of the experiments, solutions were obtained after leaching the concrete with a synthetic groundwater solution for 1 month at 90 °C. At the second stage, the interactions of the obtained solutions with bentonite at 90 °C were studied. As a result of the experiments, the processes of concrete leaching were revealed, which changed the composition and acidity (an increase in the pH from 6.1 to 12.1) of the synthetic water and led to an increase in the porosity of the material in contact with the solution. However, no dissolution of montmorillonite was observed, and the changes were quite small. The research results show the high stability of bentonite from the 10th Khutor deposit under model conditions, which was confirmed by modeling. Thus, we can say that at pH ≈ 12 and at elevated temperatures, montmorillonite retains a stable structure for a long time, which is important for ensuring the safety of disposal in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.