Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.
Knowledge on the evolution and distribution of late blight resistance genes is important for a better understanding of the dynamics of these genes in nature. We analyzed the presence and allelic diversity of the late blight resistance genes Rpi-blb1, Rpi-blb2, and Rpi-blb3, originating from Solanum bulbocastanum, in a set of tuber-bearing Solanum species comprising 196 different taxa. The three genes were only present in some Mexican diploid as well as polyploid species closely related to S. bulbocastanum. Sequence analysis of the fragments obtained from the Rpi-blb1 and Rpi-blb3 genes suggests an evolution through recombinations and point mutations. For Rpi-blb2, only sequences identical to the cloned gene were found in S. bulbocastanum accessions, suggesting that it has emerged recently. The three resistance genes occurred in different combinations and frequencies in S. bulbocastanum accessions and their spread is confined to Central America. A selected set of genotypes was tested for their response to the avirulence effectors IPIO-2, Avr-blb2, and Pi-Avr2, which interact with Rpi-blb1, Rpi-blb2, and Rpi-blb3, respectively, as well as by disease assays with a diverse set of isolates. Using this approach, some accessions could be identified that contain novel, as yet unknown, late blight resistance factors in addition to the Rpi-blb1, Rpi-blb2, and Rpi-blb3 genes.
Stomatal ontogenesis is a key element of plant adaptation aiming to control photosynthetic efficiency and water management under fluctuating environments 1,2,3 . Development of stomata is guided by endogenous and environmental cues and is tightly coupled to overall plant growth 1,2,3 .
SummaryThis study revealed activation-dependent and coordinated relocation of Medicago sativa SIMKK and SIMK after salt stress. Arabidopsis seedlings stably overexpressing YFP-tagged SIMKK showed altered salt sensitivity and proteome changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.