One of the main challenges impeding wider uptake of magnesium alloys by the industry is their poor resistance to general corrosion and stress-corrosion cracking (SCC), the nature of which is not fully understood. Although SCC is generally associated with hydrogen embrittlement, the experimental data on the possible hydrogen state, concentration and distribution in Mg is scarce, and its role in SCC is unclear. These issues are addressed in the present study using as-cast technically pure Mg as well as wrought ZK60 and AZ31 alloys slow-strain rate tensile tested in air and in corrosive media before and after prestraining. Hydrogen concentration and extraction curves have been obtained and
The implantation of metallic devices in orthopaedic surgical procedures and coronary angioplasty is associated with the risk of various adverse events: (i) mechanical (premature failure), (ii) chemo-mechanical (corrosion and corrosion-fatigue degradation) and (iii) biomedical (chronic local inflammatory reactions, tissue necrosis, etc.). In this regard, the development of biodegradable implants/stents, which provide the necessary mechanical support for the healing period of the bone or the vessel wall and then are completely resorbed, has bright prospects. Magnesium alloys are the most suitable candidates for that purpose due to their superior mechanical performance, bioresorbability and biocompatibility. This article presents the results of the comparative research on several wrought biodegradable alloys, assessing their potential for biomedical applications. The Mg–Zn–X alloys with different chemical compositions and microstructures were produced using severe plastic deformation techniques. Functional properties pivotal for biomedical applications—mechanical strength, in vitro corrosion resistance and cytotoxic activity—were included in the focus of the study. Excellent mechanical performance and low cytotoxic effects are documented for all alloys with a notable exception for one of two Mg–Zn–Zr alloys. The in vitro corrosion resistance is, however, below expectations due to critical impurities, and this property has yet to be drastically improved through the cleaner materials fabrication processing before they can be considered for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.