Collagen I gels with protein concentrations of 1, 2, and 3.5 mg/ml were prepared and embedded in a porous polylactide scaffold to reduce their contraction. Concentration of the gel did not affect its degradation. Collagen gels promoted the formation of cell networks. The cells in the collagen gel with a concentration of 1 mg/ml embedded in polylactide scaffold had elongated spindle-like shape, in contrast to flattened cells in collagen gel of the same concentration not embedded in the scaffold. Stabilization of the collagen gel in the polylactide scaffold promoted active synthesis of laminin and fibronectin by cells as soon as on day 5 of culturing in comparison with that in free collagen substrate.
Polymer blending is a suitable physical modification method to create novel properties of different polymers. Blending polylactic acid (PLA) and polyethylene glycol (PEG) produces materials with a wide range of properties. This study was the first to investigate the effect of different isomeric forms of PLA and PEG with terminal amino groups to obtain biocompatible films for human mesenchymal stem cell cultivation. It has been shown by scanning electron microscopy that the surface topology changes to the greatest extent when using films obtained on the basis of poly(d,l-lactide) and PEG with high molecular weights (15,000 g/mol). In order to obtain thin films and rapid evaporation of the solvent, PEG is mixed with PLA and does not form a separate phase and is not further washed out during the incubation in water. The presence of PEG with terminal hydroxyl and amino groups in blend films after incubation in water was proven using Fourier transform infrared (FTIR) spectroscopy. Results of fluorescence microscopy demonstrated that blend films formed on PLA and polyethylene glycol diamine (PEG-NH2) are more suitable for cell spreading and focal contact formation compared to cells cultured on the surface of pure PLA films or films made from PLA and PEG.
Collagen in the body is exposed to a range of influences, including free radicals, which can lead to a significant change in its structure. Modeling such an effect on collagen fibrils will allow one to get a native structure in vitro, which is important for modern tissue engineering. The aim of this work is to study the effect of free radicals on a solution of hydrogen peroxide with a concentration of 0.006–0.15% on the structure of collagen fibrils in vitro, and the response of cells to such treatment. SEM measurements show a decrease in the diameter of the collagen fibrils with an increase in the concentration of hydrogen peroxide. Such treatment also leads to an increase in the wetting angle of the collagen surface. Fourier transform infrared spectroscopy demonstrates a decrease in the signal with wave number 1084 cm−1 due to the detachment of glucose and galactose linked to hydroxylysine, connected to the collagen molecule through the -C-O-C- group. During the first day of cultivating ASCs, MG-63, and A-431 cells, an increase in cell adhesion on collagen fibrils treated with H2O2 (0.015, 0.03%) was observed. Thus the effect of H2O2 on biologically relevant extracellular matrices for the formation of collagen scaffolds was shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.