Mutations in the adaptor protein PSTPIP2 are the cause of the autoinflammatory disease chronic multifocal osteomyelitis in mice. This disease closely resembles the human disorder chronic recurrent multifocal osteomyelitis, characterized by sterile inflammation of the bones and often associated with inflammation in other organs, such as the skin. The most critical process in the disease’s development is the enhanced production of IL-1β. This excessive IL-1β is likely produced by neutrophils. In addition, the increased activity of macrophages, osteoclasts, and megakaryocytes has also been described. However, the molecular mechanism of how PSTPIP2 deficiency results in this phenotype is poorly understood. Part of the PSTPIP2 inhibitory function is mediated by protein tyrosine phosphatases from the proline-, glutamic acid-, serine- and threonine-rich (PEST) family, which are known to interact with the central part of this protein, but other regions of PSTPIP2 not required for PEST-family phosphatase binding were also shown to be indispensable for PSTPIP2 function. In this article, we show that PSTPIP2 binds the inhibitory enzymes Csk and SHIP1. The interaction with SHIP1 is of particular importance because it binds to the critical tyrosine residues at the C terminus of PSTPIP2, which is known to be crucial for its PEST-phosphatase–independent inhibitory effects in different cellular systems. We demonstrate that in neutrophils this region is important for the PSTPIP2-mediated suppression of IL-1β processing and that SHIP1 inhibition results in the enhancement of this processing. We also describe deregulated neutrophil response to multiple activators, including silica, Ab aggregates, and LPS, which is suggestive of a rather generalized hypersensitivity of these cells to various external stimulants.
Membrane rafts and signaling molecules associated with them are thought to play important roles in immunoreceptor signaling. Rafts differ in their lipid and protein compositions from the rest of the membrane and are relatively resistant to solubilization by Triton X-100 or similar detergents, producing buoyant, detergent-resistant membranes (DRMs) that can be isolated by density gradient ultracentrifugation. One of the key signaling molecules present in T cell DRMs is the transmembrane adaptor protein LAT (linker for activation of T cells). In contrast to previous results, a recent study demonstrated that a LAT construct not present in the buoyant DRMs is fully able to support TCR signaling and development of T cells in vivo. This finding caused doubts about the real physiological role of rafts in TCR signaling. In this study, we demonstrate that these results can be explained by the existence of a novel type of membrane raft-like microdomains, producing upon detergent solubilization “heavy DRMs” containing a number of membrane molecules. At a moderate level of expression, LAT supported TCR signaling more efficiently than constructs targeted to the microdomains producing heavy DRMs or to nonraft membrane. We suggest that different types of membrane microdomains provide environments regulating the functional efficiencies of signaling molecules present therein.
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.